A \( 2000-\mathrm{kg} \) ore car rolls 50.0 m down a frictionless \( 10.0^{\circ} \) incline. If there is a horizontal spring at the end of the incline, what spring constant is required to stop the ore car in a distance of 1.00 m ? 1) \( 340 \mathrm{kN} / \mathrm{m} \) 2) \( 681 \mathrm{kN} / \mathrm{m} \) 3) \( 980 \mathrm{kN} / \mathrm{m} \) 4) \( 1960 \mathrm{kN} / \mathrm{m} \) 5) \( 2100 \mathrm{kN} / \mathrm{m} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Bonus Knowledge
To solve this problem, we can use energy conservation principles. As the ore car rolls down the incline, it converts potential energy into kinetic energy, and then the kinetic energy is converted into spring potential energy when it compresses the spring. 1. **Calculating Potential Energy**: The height \( h \) of the incline can be calculated using the sine function. \[ h = 50.0 \, \text{m} \times \sin(10^\circ) \approx 8.7 \, \text{m} \] The potential energy (PE) at the height can be calculated using: \[ PE = mgh = (2000 \, \text{kg}) \cdot (9.81 \, \text{m/s}^2) \cdot (8.7 \, \text{m}) \approx 171,510 \, \text{J} \] 2. **Spring Potential Energy**: The spring potential energy (SPE) when compressed \( x = 1.0 \, \text{m} \) is given by: \[ SPE = \frac{1}{2} k x^2 \] Setting the kinetic energy equal to the spring potential energy: \[ PE = \frac{1}{2} k (1.0)^2 \] From our calculations: \[ 171,510 \, \text{J} = \frac{1}{2} k (1.0)^2 \] Solving for \( k \): \[ k = \frac{2 \times 171,510}{(1.0)^2} \approx 343,020 \, \text{N/m} \approx 340 \, \text{kN/m} \] Therefore, the correct answer is option 1) \( 340 \, \text{kN/m} \).
