Pregunta
upstudy study bank question image url

A \( 2000-\mathrm{kg} \) ore car rolls 50.0 m down a frictionless \( 10.0^{\circ} \) incline. If there is a horizontal spring at the end of the incline, what spring constant is required to stop the ore car in a distance of 1.00 m ? 1) \( 340 \mathrm{kN} / \mathrm{m} \) 2) \( 681 \mathrm{kN} / \mathrm{m} \) 3) \( 980 \mathrm{kN} / \mathrm{m} \) 4) \( 1960 \mathrm{kN} / \mathrm{m} \) 5) \( 2100 \mathrm{kN} / \mathrm{m} \)

Ask by Lang Salazar. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The required spring constant is approximately 340 kN/m.

Solución

We start by noting that the ore car slides down a frictionless incline and converts gravitational potential energy into kinetic energy. When it reaches the bottom of the incline, all of this energy is available to be stored in the horizontal spring as elastic potential energy. (We assume here that at the bottom, the ore car is on a horizontal surface so that its kinetic energy is entirely available for compressing the spring.) Step 1. Determine the vertical drop, h, along the incline:   h = (length of incline) × sin(θ)     = 50.0 m × sin(10.0°)     ≈ 50.0 m × 0.17365 ≈ 8.68 m Step 2. Calculate the gravitational potential energy lost:   ΔU = mgh = (2000 kg)(9.8 m/s²)(8.68 m)     ≈ 2000 × 9.8 × 8.68 ≈ 170,117 J Step 3. Relate this energy to the energy stored in the spring. When the spring is compressed a distance x (here, 1.00 m), the spring stores energy   U_spring = (1/2) k x². Setting the two energies equal:   mgh = (1/2) k x² Step 4. Solve for k:   k = (2 mgh) / x² = (2 × 2000 kg × 9.8 m/s² × 8.68 m) / (1.00 m)²     = (2 × 2000 × 9.8 × 8.68) Calculate:   First, 2000 × 9.8 = 19,600.   Then, 19,600 × 8.68 ≈ 170,128.   Multiply by 2: 2 × 170,128 ≈ 340,256 N/m   Which is approximately 340 kN/m. Thus, the required spring constant is about 340 kN/m, which corresponds to answer choice (1).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To solve this problem, we can use energy conservation principles. As the ore car rolls down the incline, it converts potential energy into kinetic energy, and then the kinetic energy is converted into spring potential energy when it compresses the spring. 1. **Calculating Potential Energy**: The height \( h \) of the incline can be calculated using the sine function. \[ h = 50.0 \, \text{m} \times \sin(10^\circ) \approx 8.7 \, \text{m} \] The potential energy (PE) at the height can be calculated using: \[ PE = mgh = (2000 \, \text{kg}) \cdot (9.81 \, \text{m/s}^2) \cdot (8.7 \, \text{m}) \approx 171,510 \, \text{J} \] 2. **Spring Potential Energy**: The spring potential energy (SPE) when compressed \( x = 1.0 \, \text{m} \) is given by: \[ SPE = \frac{1}{2} k x^2 \] Setting the kinetic energy equal to the spring potential energy: \[ PE = \frac{1}{2} k (1.0)^2 \] From our calculations: \[ 171,510 \, \text{J} = \frac{1}{2} k (1.0)^2 \] Solving for \( k \): \[ k = \frac{2 \times 171,510}{(1.0)^2} \approx 343,020 \, \text{N/m} \approx 340 \, \text{kN/m} \] Therefore, the correct answer is option 1) \( 340 \, \text{kN/m} \).

preguntas relacionadas

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad