Pregunta
upstudy study bank question image url

equation of the tangent line to the graph of passing through the point
that for all and that is NOT differentiable at ,

Ask by Cervantes Medina. in South Africa
Mar 31,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The equation of the tangent line to the graph of passing through the point is .

Solución

To find the equation of the tangent line to the graph of passing through the point , we need to follow these steps:
  1. Find the derivative of to get the slope of the tangent line.
  2. Use the point-slope form of a line to find the equation of the tangent line.
  3. Verify that the tangent line passes through the given point.
Let’s start by finding the derivative of .
Evaluate the derivative by following steps:
  • step0: Evaluate the derivative:
  • step1: Use differentiation rules:
  • step2: Find the derivative:
  • step3: Calculate:
  • step4: Find the derivative:
  • step5: Calculate:
  • step6: Simplify:
  • step7: Transform the expression:
  • step8: Calculate:
  • step9: Add the terms:
  • step10: Transform the expression:
  • step11: Subtract the numbers:
  • step12: Transform the expression:
  • step13: Subtract the numbers:
  • step14: Transform the expression:
  • step15: Remove the opposites:

    The derivative of is .
Now, we can use the point-slope form of a line to find the equation of the tangent line. The point-slope form is given by:
where is the given point and is the slope of the tangent line.
Given point:
Slope of the tangent line:
Substitute the values into the point-slope form to find the equation of the tangent line.
Calculate the value by following steps:
  • step0: Calculate:
  • step1: Multiply:
  • step2: Rewrite the fraction:
  • step3: Remove 0:

    The equation of the tangent line to the graph of passing through the point is .
Therefore, the equation of the tangent line is .

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the equation of the tangent line, we first need to compute the derivative of the function . Using the product rule, the derivative gives us the slope of the tangent at any point . We can also evaluate to verify if that point lies on the graph. The slope of the tangent line can then be used in the point-slope form to derive the equation of the tangent line.
Using the structure , we can see that at , the function has a critical point since it forces a repeated root. However, must be defined carefully to ensure that remains continuous, while still making not differentiable at . An example of could be a piecewise function that causes a ‘corner’ at that point.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad