Let \( u \) be a differentiable function of \( x \). Assume the following result is proved. \[ \frac{d}{d x}[|u|]=u^{\prime} \frac{u}{|u|}, u \neq 0 \text {. } \] Use this result to find the derivative of the function. \[ h(x)=|8 x| \cos (4 x) \] \( h^{\prime}(x)=\square \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Bonus Knowledge
To find the derivative \( h'(x) \) of the function \( h(x) = |8x| \cos(4x) \), we will use the product rule along with the result provided for the derivative of the absolute value. Define \( u(x) = 8x \). Then, we have \( |u(x)| = |8x| \). First, we compute the derivative of \( |u(x)| \): \[ \frac{d}{dx}[|u|] = u' \frac{u}{|u|} = 8 \cdot \frac{8x}{|8x|} = 8 \cdot \frac{8x}{|8|x|} = 8 \cdot \frac{x}{|x|} \text{ for } x \neq 0. \] Next, we apply the product rule to find \( h'(x) \): \[ h'(x) = \frac{d}{dx}[|8x| \cos(4x)] = \frac{d}{dx}[|8x|] \cos(4x) + |8x| \frac{d}{dx}[\cos(4x)]. \] We already found that \( \frac{d}{dx}[|8x|] = 8 \frac{x}{|x|} \) for \( x \neq 0 \). Now we calculate the derivative of \( \cos(4x) \): \[ \frac{d}{dx}[\cos(4x)] = -4 \sin(4x). \] Putting it all together: \[ h'(x) = \left(8 \frac{x}{|x|}\right) \cos(4x) + |8x| (-4 \sin(4x)). \] This simplifies to: \[ h'(x) = 8 \frac{x}{|x|} \cos(4x) - 4 |8x| \sin(4x). \] Thus, the final expression for the derivative is: \[ h'(x) = 8 \frac{x}{|x|} \cos(4x) - 32 |x| \sin(4x). \]
