Pregunta
upstudy study bank question image url

An object is 10 cm from a concave mirror that has a focal length of 5 cm . Determine image location, magnification, real or virtual, and upright or inverted for the object. a. Using the equation:

Ask by Stewart Hill. in the United States
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The image is located 10 cm from the mirror, has a magnification of -1, is real, and is inverted.

Solución

To determine the image location, magnification, whether the image is real or virtual, and whether it is upright or inverted for an object placed in front of a concave mirror, we can use the mirror equation: \[ \frac{1}{f} = \frac{1}{d_o} + \frac{1}{d_i} \] where: - \( f \) is the focal length of the mirror, - \( d_o \) is the distance of the object from the mirror, - \( d_i \) is the distance of the image from the mirror. Given: - Focal length (\( f \)) = 5 cm - Distance of the object from the mirror (\( d_o \)) = 10 cm Let's calculate the image location (\( d_i \)) using the mirror equation. Calculate the value by following steps: - step0: Calculate: \(\frac{1}{5}-\frac{1}{10}\) - step1: Reduce fractions to a common denominator: \(\frac{2}{5\times 2}-\frac{1}{10}\) - step2: Multiply the numbers: \(\frac{2}{10}-\frac{1}{10}\) - step3: Transform the expression: \(\frac{2-1}{10}\) - step4: Subtract the numbers: \(\frac{1}{10}\) The image location (\( d_i \)) is 10 cm from the mirror. Now, let's calculate the magnification (\( M \)) using the formula: \[ M = -\frac{d_i}{d_o} \] where: - \( M \) is the magnification, - \( d_i \) is the distance of the image from the mirror, - \( d_o \) is the distance of the object from the mirror. Given: - Distance of the object from the mirror (\( d_o \)) = 10 cm - Distance of the image from the mirror (\( d_i \)) = 10 cm Let's calculate the magnification (\( M \)). Calculate the value by following steps: - step0: Calculate: \(\frac{-10}{10}\) - step1: Reduce the fraction: \(-1\) The magnification (\( M \)) is -1. Since the magnification is negative, the image is inverted. Therefore, the image location is 10 cm from the mirror, the magnification is -1, the image is real, and it is inverted.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the image location, we can use the mirror equation \( \frac{1}{f} = \frac{1}{d_o} + \frac{1}{d_i} \), where \( f \) is the focal length, \( d_o \) is the object distance, and \( d_i \) is the image distance. Here, \( f = -5 \) cm (negative for a concave mirror) and \( d_o = -10 \) cm (also negative since the object is in front of the mirror). Plugging in the values: \[ \frac{1}{-5} = \frac{1}{-10} + \frac{1}{d_i} \] Solving for \( d_i \) gives us \( d_i = -3.33 \) cm, indicating the image is located 3.33 cm behind the mirror (a virtual image). The magnification \( m \) is given by \( m = -\frac{d_i}{d_o} \). Substituting the values provides \( m = -\frac{-3.33}{-10} = 0.33 \). A positive magnification means the image is virtual and upright. --- Diving into the journey of concave mirrors, these reflective surfaces were used in ancient times for various applications, from early telescopes to simple makeup mirrors! The fascinating aspect is how their design allows them to focus light, creating larger-than-life images – perfect for checking your hair before heading out! For maximizing your success with mirror problems, it's essential to keep track of the sign conventions: remember that distances measured in the direction of the incoming light (object side) are negative for mirrors. A common mistake is forgetting to include the negative sign for focal length and object distance, leading to confusion over whether the image is real or virtual. So double-check those signs and reflect on your calculations!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad