Write the standard form of the equation and the general form of the equation of the circle with radius \( r \) and center \( (h, k) \). Then graph the circle. \( r=5 ; \quad(h, k)=(-4,-3) \) The standard form of the equation of this circle is \( (x+4)^{2}+(y+3)^{2}=25 \). The general form of the equation of this circle is (Simplify your answer.)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To convert the standard form \( (x + 4)^{2} + (y + 3)^{2} = 25 \) into general form, you'll want to expand the equation: 1. Expand each square: \( (x + 4)^{2} = x^{2} + 8x + 16 \) \( (y + 3)^{2} = y^{2} + 6y + 9 \) 2. Combine them: \( x^{2} + 8x + 16 + y^{2} + 6y + 9 = 25 \) 3. Move \( 25 \) to the left side: \( x^{2} + 8x + y^{2} + 6y + 16 + 9 - 25 = 0 \) 4. Simplify: \( x^{2} + 8x + y^{2} + 6y = 0 \) Thus, the general form of the equation of the circle is: \( x^{2} + 8x + y^{2} + 6y = 0 \) --- Drawing the circle based on the equation: To graph this circle centered at \((-4, -3)\) with a radius of \(5\), start by plotting the center. From the center, move \(5\) units in all four cardinal directions: up, down, left, and right. Connect these points in a round shape to visualize the complete circle!
