Pregunta
upstudy study bank question image url

Write the standard form of the equation and the general form of the equation of the circle with radius \( r \) and center \( (h, k) \). Then graph the circle. \( r=1 ; \quad(h, k)=(0,-1) \) The standard form of the equation of this circle is

Ask by Lee Christensen. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The standard form of the equation is \( x² + (y + 1)² = 1 \) and the general form is \( x² + y² + 2y = 0 \). The circle is centered at (0, –1) with a radius of 1.

Solución

For a circle with radius r and center (h, k): • The standard form equation is: (x - h)² + (y - k)² = r² • The general form equation is: x² + y² - 2hx - 2ky + (h² + k² - r²) = 0 Given r = 1 and (h, k) = (0, –1): 1. Substitute into the standard form:   (x - 0)² + (y - (–1))² = 1²   x² + (y + 1)² = 1 2. To derive the general form, expand the standard form:   x² + (y + 1)² = x² + (y² + 2y + 1) = 1   x² + y² + 2y + 1 = 1   x² + y² + 2y = 0 Thus, the answers are: • Standard form: x² + (y + 1)² = 1 • General form: x² + y² + 2y = 0 Graphing the circle: 1. Plot the center at (0, –1). 2. Since r = 1, from the center you can measure one unit in all directions.   – To the right: (1, –1)   – To the left: (–1, –1)   – Upward: (0, 0)   – Downward: (0, –2) 3. Draw a circle that passes through these four points, ensuring an even distance around the center. This completes the solution.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

The standard form of the equation of a circle with radius \( r \) and center \( (h, k) \) is given by \( (x - h)^2 + (y - k)^2 = r^2 \). For your circle with \( r = 1 \) and center \( (0, -1) \), the equation becomes \( (x - 0)^2 + (y + 1)^2 = 1^2 \), simplifying to \( x^2 + (y + 1)^2 = 1 \). In general form, you expand the standard form. Starting from \( x^2 + (y + 1)^2 = 1 \), we have \( x^2 + y^2 + 2y + 1 - 1 = 0 \) or simplified to \( x^2 + y^2 + 2y = 0 \). To graph this circle, plot the center at \( (0, -1) \) on the Cartesian plane. Since the radius is \( 1 \), draw a circle that reaches \( 1 \) unit up to \( (0, 0) \), down to \( (0, -2) \), left to \( (-1, -1) \), and right to \( (1, -1) \). Voila! You’ve got a circle!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad