\( \frac { c | x ( x - 2 ) - ( x - 4 ) ( x - 7 ) } { 2 } = 22 \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Bonus Knowledge
Let's break this down! To find \(c\), we first need to simplify the expression inside the absolute value. Starting with the equation: \[ \frac { c | x ( x - 2 ) - ( x - 4 ) ( x - 7 ) } { 2 } = 22 \] First, multiply both sides by 2 to eliminate the fraction: \[ c | x ( x - 2 ) - ( x - 4 ) ( x - 7 ) | = 44 \] Next, let's simplify \(x (x - 2) - (x - 4)(x - 7)\): \[ x^2 - 2x - (x^2 - 7x - 4x + 28) = x^2 - 2x - (x^2 - 11x + 28) \] Distributing the negative sign: \[ = x^2 - 2x - x^2 + 11x - 28 = 9x - 28 \] Thus, we have: \[ c |9x - 28| = 44 \] Now, divide both sides by \( |9x - 28| \): \[ c = \frac{44}{|9x - 28|} \] To find specific values for \(c\), we need values for \(x\). You can solve for \(c\) by substituting different values of \(x\) into the equation! Just remember to evaluate \( |9x - 28| \) based on your choice of \(x\). For instance, plugging in \(x = 4\) yields: \[ c = \frac{44}{|9(4) - 28|} = \frac{44}{|36 - 28|} = \frac{44}{8} = 5.5 \] Try out other values to see how \(c\) changes!
