Use implicit differentiation to find \( \frac{d y}{d x} \) \[ x^{3}+\sin y=x^{2} y^{5} \]
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Beyond the Answer
To find \( \frac{dy}{dx} \) using implicit differentiation for the equation \( x^{3} + \sin y = x^{2} y^{5} \), we start by differentiating both sides with respect to \( x \). Differentiating the left side: \[ \frac{d}{dx}(x^3) + \frac{d}{dx}(\sin y) = 3x^{2} + \cos(y) \frac{dy}{dx} \] Now for the right side: \[ \frac{d}{dx}(x^2 y^5) = \frac{d}{dx}(x^2) \cdot y^5 + x^2 \cdot \frac{d}{dx}(y^5) = 2xy^5 + x^2 \cdot 5y^4 \frac{dy}{dx} = 2xy^5 + 5x^2y^4 \frac{dy}{dx} \] Now we equate both sides: \[ 3x^2 + \cos(y) \frac{dy}{dx} = 2xy^5 + 5x^2y^4 \frac{dy}{dx} \] Next, we need to gather all terms involving \( \frac{dy}{dx} \) on one side: \[ \cos(y) \frac{dy}{dx} - 5x^2 y^4 \frac{dy}{dx} = 2xy^5 - 3x^2 \] Factoring out \( \frac{dy}{dx} \): \[ \left( \cos(y) - 5x^2 y^4 \right) \frac{dy}{dx} = 2xy^5 - 3x^2 \] Finally, solving for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{2xy^5 - 3x^2}{\cos(y) - 5x^2 y^4} \]
