5. Find the perimeter of \( \triangle A B C \) with vertices \( A(2,4), B(8,12) \), and \( C(24,0) \). 6. Determine whether \( \triangle D E F \) with vertices \( D(6,-6), E(39,-12) \), and \( F(24,18) \) is scalene, isosceles, or equilateral.
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Mind Expander
To find the perimeter of \( \triangle ABC \), calculate the lengths of its sides using the distance formula. The lengths of \( AB \), \( BC \), and \( CA \) are given by: 1. \( AB = \sqrt{(8-2)^2 + (12-4)^2} = \sqrt{36 + 64} = \sqrt{100} = 10 \) 2. \( BC = \sqrt{(24-8)^2 + (0-12)^2} = \sqrt{256 + 144} = \sqrt{400} = 20 \) 3. \( CA = \sqrt{(2-24)^2 + (4-0)^2} = \sqrt{484 + 16} = \sqrt{500} = 10\sqrt{5} \) Adding these lengths gives the perimeter: \( P = 10 + 20 + 10\sqrt{5} \). For \( \triangle DEF \), compute the lengths of its sides: 1. \( DE = \sqrt{(39-6)^2 + (-12+6)^2} = \sqrt{1089 + 36} = \sqrt{1125} \) 2. \( EF = \sqrt{(24-39)^2 + (18+12)^2} = \sqrt{225 + 900} = \sqrt{1125} \) 3. \( FD = \sqrt{(24-6)^2 + (18+6)^2} = \sqrt{324 + 576} = \sqrt{900} = 30 \) Since \( DE = EF \) and are equal, while \( FD \) is different, \( \triangle DEF \) is classified as isosceles!
preguntas relacionadas
