Pregunta
upstudy study bank question image url

Given \[ 2 x^{2}+(k+1) x=-k+1 \] Show that the roots are real and rational for all \( k \in \mathbb{Z} \).

Ask by Sanders Hampton. in South Africa
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The roots of the equation \(2x^2 + (k+1)x = -k+1\) are always real and rational for any integer \(k\).

Solución

To show that the roots of the given quadratic equation \(2x^2 + (k+1)x = -k+1\) are real and rational for all \(k \in \mathbb{Z}\), we need to analyze the discriminant of the quadratic equation. The discriminant of a quadratic equation \(ax^2 + bx + c = 0\) is given by the formula \(D = b^2 - 4ac\). If the discriminant is positive, the roots are real and distinct. If the discriminant is zero, the roots are real and equal. If the discriminant is negative, the roots are complex. Given the quadratic equation \(2x^2 + (k+1)x = -k+1\), we can rewrite it in the standard form as \(2x^2 + (k+1)x + k - 1 = 0\). Now, we can calculate the discriminant using the formula \(D = b^2 - 4ac\), where \(a = 2\), \(b = k+1\), and \(c = k - 1\). \[D = (k+1)^2 - 4(2)(k-1)\] \[D = k^2 + 2k + 1 - 8k + 8\] \[D = k^2 - 6k + 9\] \[D = (k-3)^2\] Since the discriminant is a perfect square, it is always non-negative for all \(k \in \mathbb{Z}\). Therefore, the roots of the given quadratic equation are real and rational for all \(k \in \mathbb{Z}\).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To determine if the roots of the quadratic equation \[ 2x^2 + (k + 1)x + (k - 1) = 0 \] are real and rational for all \( k \in \mathbb{Z} \), we can use the discriminant. The general form of a quadratic equation is \( ax^2 + bx + c = 0 \), where the discriminant \( D \) is given by: \[ D = b^2 - 4ac \] In our case, \( a = 2 \), \( b = k + 1 \), and \( c = k - 1 \). Thus, the discriminant becomes: \[ D = (k + 1)^2 - 4(2)(k - 1) \] Now, let's simplify the discriminant: \[ D = (k + 1)^2 - 8(k - 1) \] \[ D = (k^2 + 2k + 1) - (8k - 8) \] \[ D = k^2 + 2k + 1 - 8k + 8 \] \[ D = k^2 - 6k + 9 \] \[ D = (k - 3)^2 \] The discriminant \( (k - 3)^2 \) is always non-negative because the square of any real number is non-negative. This means that the quadratic has real roots for any integer \( k \). Next, we need to check if the roots are rational. A quadratic equation has rational roots if its discriminant is a perfect square. In this case, \( (k - 3)^2 \) is indeed a perfect square for any integer \( k \). Therefore, since both conditions for the roots (real and rational) are satisfied, we can conclude that the roots of the equation \( 2x^2 + (k + 1)x + (k - 1) = 0 \) are real and rational for all \( k \in \mathbb{Z} \). This is a great example of how analyzing the structure of a mathematical statement can lead to profound and simple results!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad