10.1 If \( \sin 36^{\circ} \cos 12^{\circ}=p \) and \( \cos 36^{\circ} \sin 12^{\circ}=q \), determine in terms of \( p \) and \( q \) the value of: \( 10.1 .1 \quad \sin 48^{\circ} \) \( 10.1 .2 \quad \sin 24^{\circ} \) \( 10.1 .3 \quad \cos 24^{\circ} \) \( 10.2 \quad \) Show that \( \sin ^{2} 20^{\circ}+\sin ^{2} 40^{\circ}+\sin ^{2} 80^{\circ}=\frac{3}{2} \) (HINT: \( 40^{\circ}=60^{\circ}-20^{\circ} \) and \( 80^{\circ}=60^{\circ}+20^{\circ} \) ) 10.3 10.3 .1 Prove: \( \frac{\sin ^{4} x+\sin ^{2} x \cos ^{2} x}{1+\cos x}=1-\cos x \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
To find \(\sin 48^{\circ}\), you can use the angle addition formula: \(\sin(A+B) = \sin A \cos B + \cos A \sin B\). Therefore, \(\sin 48^{\circ} = \sin(36^{\circ} + 12^{\circ}) = \sin 36^{\circ} \cos 12^{\circ} + \cos 36^{\circ} \sin 12^{\circ} = p + q\). For \(\sin 24^{\circ}\), you can utilize the angle subtraction formula: \(\sin(36^{\circ} - 12^{\circ})\). Thus, \(\sin 24^{\circ} = \sin 36^{\circ} \cos 12^{\circ} - \cos 36^{\circ} \sin 12^{\circ} = p - q\). To find \(\cos 24^{\circ}\), you can use the identity \(\cos(90^{\circ} - x) = \sin x\): hence, \(\cos 24^{\circ} = \sin(66^{\circ})\). Alternatively, apply \(\cos(36^{\circ} - 12^{\circ}) = \cos 36^{\circ} \cos 12^{\circ} + \sin 36^{\circ} \sin 12^{\circ}\) to yield the expression involving \(p\) and \(q\). Lastly, for the proof that \(\sin ^{2} 20^{\circ} + \sin ^{2} 40^{\circ} + \sin ^{2} 80^{\circ} = \frac{3}{2}\), you can use the sine double angle identity: \(\sin^2(2x) = 4\sin^2(x)\cos^2(x)\). Take advantage of using \(20^{\circ}\) and \(40^{\circ}\) to see how these angles fit into a 60-degree framework. Adjusting for these will demonstrate the equality neatly! For the final proof, begin with the left side: \(\frac{\sin^{4} x + \sin^{2} x \cos^{2} x}{1 + \cos x}\) and factor out \(\sin^2 x\) to simplify your work. Use Pythagorean identities and algebraic manipulations to arrive at the right-hand side, otherwise known as the beauty of balancing equations in trigonometric identities. Thus, embark on this journey with sine and cosine steering the way!
