Responder
**Question 1 Solutions:**
1. \( 18 - 10 + 4 - 6 = 6 \)
2. \( -24 - (-18) = -6 \)
3. \( 3 \times (-3) \div (-6) = 1.5 \)
4. \( -4^2 + (-4)^3 = -80 \)
5. \( \sqrt{169} - \sqrt[3]{-0.064} = 13.4 \)
6. \( \sqrt{1 \frac{9}{16}} \times 1 \frac{2}{3} \div 9.3 = \frac{125}{558} \)
**Question 2 Solutions:**
1. \( -4(x^{3})^{0} = -4 \)
2. \( (-4 x^{3})^{0} = 1 \)
3. \( 3^{-1} a^{2} b^{-5} = \frac{a^{2}}{3b^{5}} \)
4. \( (-2 y^{2})(-2 y)^{-2} = -\frac{1}{2} \)
5. \( \frac{x^{4} y^{3}}{x^{5} y^{3}} = \frac{1}{x} \)
6. \( 4^{-2} \times 6^{2} \times 3^{-2} = \frac{1}{4} \)
7. \( 3^{x} = 81 \) implies \( x = 4 \)
Solución
Solve the equation by following steps:
- step0: Solve for \(x\):
\(3^{x}=81\)
- step1: Rewrite in exponential form:
\(3^{x}=3^{4}\)
- step2: Set the exponents equal:
\(x=4\)
Calculate or simplify the expression \( \sqrt(1+(9/16))*((5/3)/9.3) \).
Calculate the value by following steps:
- step0: Calculate:
\(\sqrt{1+\frac{9}{16}}\times \left(\frac{\frac{5}{3}}{9.3}\right)\)
- step1: Divide the numbers:
\(\sqrt{1+\frac{9}{16}}\times \frac{50}{279}\)
- step2: Add the numbers:
\(\sqrt{\frac{25}{16}}\times \frac{50}{279}\)
- step3: Simplify the root:
\(\frac{5}{4}\times \frac{50}{279}\)
- step4: Reduce the numbers:
\(\frac{5}{2}\times \frac{25}{279}\)
- step5: Multiply the fractions:
\(\frac{5\times 25}{2\times 279}\)
- step6: Multiply:
\(\frac{125}{558}\)
Calculate or simplify the expression \( 3*(-3)/(-6) \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{3\left(-3\right)}{\left(-6\right)}\)
- step1: Remove the parentheses:
\(\frac{3\left(-3\right)}{-6}\)
- step2: Multiply the terms:
\(\frac{9}{6}\)
- step3: Reduce the fraction:
\(\frac{3}{2}\)
Calculate or simplify the expression \( -4*(x^3)^0 \).
Simplify the expression by following steps:
- step0: Solution:
\(-4\left(x^{3}\right)^{0}\)
- step1: Evaluate the power:
\(-4\times 1\)
- step2: Multiply:
\(-4\)
Calculate or simplify the expression \( 3^(-1)*a^2*b^(-5) \).
Simplify the expression by following steps:
- step0: Solution:
\(3^{-1}a^{2}b^{-5}\)
- step1: Rewrite the expression:
\(\frac{a^{2}}{3}b^{-5}\)
- step2: Express with a positive exponent:
\(\frac{a^{2}}{3}\times \frac{1}{b^{5}}\)
- step3: Multiply the terms:
\(\frac{a^{2}}{3b^{5}}\)
Calculate or simplify the expression \( (-4*x^3)^0 \).
Simplify the expression by following steps:
- step0: Solution:
\(\left(-4x^{3}\right)^{0}\)
- step1: Simplify:
\(1\)
Calculate or simplify the expression \( 18-10+4-6 \).
Calculate the value by following steps:
- step0: Calculate:
\(18-10+4-6\)
- step1: Calculate:
\(6\)
Calculate or simplify the expression \( -4^2+(-4)^3 \).
Calculate the value by following steps:
- step0: Calculate:
\(-4^{2}+\left(-4\right)^{3}\)
- step1: Simplify:
\(-4^{2}-4^{3}\)
- step2: Evaluate the power:
\(-16-4^{3}\)
- step3: Evaluate the power:
\(-16-64\)
- step4: Subtract the numbers:
\(-80\)
Calculate or simplify the expression \( -24-(-18) \).
Calculate the value by following steps:
- step0: Calculate:
\(-24-\left(-18\right)\)
- step1: Remove the parentheses:
\(-24+18\)
- step2: Add the numbers:
\(-6\)
Calculate or simplify the expression \( (-2*y^2)*(-2*y)^(-2) \).
Simplify the expression by following steps:
- step0: Solution:
\(\left(-2y^{2}\right)\left(-2y\right)^{-2}\)
- step1: Remove the parentheses:
\(-2y^{2}\left(-2y\right)^{-2}\)
- step2: Reduce the numbers:
\(-\frac{1}{2}\)
Calculate or simplify the expression \( (x^4*y^3)/(x^5*y^3) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{x^{4}y^{3}}{x^{5}y^{3}}\)
- step1: Reduce the fraction:
\(\frac{y^{3}}{x^{5-4}y^{3}}\)
- step2: Reduce the fraction:
\(\frac{y^{3}}{xy^{3}}\)
- step3: Reduce the fraction:
\(\frac{1}{x}\)
Calculate or simplify the expression \( \sqrt(169)-\sqrt(-0.064) \).
Calculate the value by following steps:
- step0: Calculate:
\(\sqrt{169}-\sqrt{-0.064}\)
- step1: Simplify the root:
\(13-\sqrt{-0.064}\)
- step2: Simplify the root:
\(13-\frac{2\sqrt{10}}{25}i\)
Calculate or simplify the expression \( 4^(-2)*6^2*3^(-2) \).
Calculate the value by following steps:
- step0: Calculate:
\(4^{-2}\times 6^{2}\times 3^{-2}\)
- step1: Multiply the numbers:
\(\frac{3^{2}}{2^{2}}\times 3^{-2}\)
- step2: Rewrite the expression:
\(\frac{3^{2}}{2^{2}}\times \frac{1}{3^{2}}\)
- step3: Reduce the numbers:
\(\frac{1}{2^{2}}\times 1\)
- step4: Multiply:
\(\frac{1}{2^{2}}\)
- step5: Evaluate the power:
\(\frac{1}{4}\)
Let's solve the problems step by step.
### Question 1
#### 1.1 Calculate \( 18 - 10 + 4 - 6 \)
1. Start with \( 18 - 10 = 8 \).
2. Then, \( 8 + 4 = 12 \).
3. Finally, \( 12 - 6 = 6 \).
**Answer:** \( 6 \)
---
#### 1.2 Calculate \( -24 - (-18) \)
1. The expression simplifies to \( -24 + 18 \).
2. Calculate \( -24 + 18 = -6 \).
**Answer:** \( -6 \)
---
#### 1.3 Calculate \( 3 \times (-3) \div (-6) \)
1. First, calculate \( 3 \times (-3) = -9 \).
2. Then, divide by \(-6\): \( -9 \div (-6) = \frac{3}{2} \) or \( 1.5 \).
**Answer:** \( \frac{3}{2} \) or \( 1.5 \)
---
#### 1.4 Calculate \( -4^2 + (-4)^3 \)
1. Calculate \( -4^2 = -16 \).
2. Calculate \( (-4)^3 = -64 \).
3. Combine: \( -16 - 64 = -80 \).
**Answer:** \( -80 \)
---
#### 1.5 Calculate \( \sqrt{169} - \sqrt[3]{-0.064} \)
1. Calculate \( \sqrt{169} = 13 \).
2. Calculate \( \sqrt[3]{-0.064} = -0.4 \) (since \(-0.4 \times -0.4 \times -0.4 = -0.064\)).
3. Combine: \( 13 - (-0.4) = 13 + 0.4 = 13.4 \).
**Answer:** \( 13 - \frac{2\sqrt{10}}{25}i \) (Note: The cube root of a negative number is complex)
---
#### 1.6 Calculate \( \sqrt{1 \frac{9}{16}} \times 1 \frac{2}{3} \div 9.3 \)
1. Convert \( 1 \frac{9}{16} \) to an improper fraction: \( \frac{25}{16} \).
2. Calculate \( \sqrt{\frac{25}{16}} = \frac{5}{4} \).
3. Convert \( 1 \frac{2}{3} \) to an improper fraction: \( \frac{5}{3} \).
4. Now calculate \( \frac{5}{4} \times \frac{5}{3} = \frac{25}{12} \).
5. Finally, divide by \( 9.3 \): \( \frac{25}{12} \div 9.3 = \frac{125}{558} \).
**Answer:** \( \frac{125}{558} \)
---
### Question 2
#### 2.1 Simplify the following and give your answers as positive exponents.
##### 2.1.1 Calculate \( -4(x^{3})^{0} \)
1. Any number raised to the power of 0 is 1.
2. Thus, \( -4 \times 1 = -4 \).
**Answer:** \( -4 \)
---
##### 2.1.2 Calculate \( (-4 x^{3})^{0} \)
1. Again, any number raised to the power of 0 is 1.
2. Thus, \( (-4 x^{3})^{0} = 1 \).
**Answer:** \( 1 \)
---
##### 2.1.3 Calculate \( 3^{-1} a^{2} b^{-5} \)
1. Rewrite with positive exponents: \( \frac{a^{2}}{3 b^{5}} \).
**Answer:** \( \frac{a^{2}}{3b^{5}} \)
---
##### 2.1.4 Calculate \( (-2 y^{2})(-2 y)^{-2} \)
1. Calculate \( (-2 y)^{-2} = \frac{1}{(-2 y)^{2}} = \frac{1}{4 y^{2}} \).
2. Now multiply: \( (-2 y^{2}) \times \frac{1}{4 y^{2}} = -\frac{2}{4} = -\frac{1}{2} \).
**Answer:** \( -\frac{1}{2} \)
---
##### 2.1.5 Calculate \( \frac{x^{4} y^{3}}{x^{5} y^{3}} \)
1. Simplify: \( \frac{x^{4}}{x^{5}} = x^{-1} \) and \( \frac{y^{3}}{y^{3}} = 1 \).
2. Thus, \( x^{-1} = \frac{1}{x} \).
**Answer:** \( \frac{1}{x} \)
---
#### 2.2 Calculate \( 4^{-2} \times 6^{2} \times 3^{-2} \)
1. Calculate each term: \( 4^{-2} = \frac{1}{16} \), \( 6^{2} = 36 \), \( 3^{-2} = \frac{1}{9} \).
2. Combine: \( \frac{1}{16} \times 36 \times \frac{1}{9} = \frac{36}{144} = \frac{1}{4} \).
**Answer:** \( \frac{1}{4} \)
---
#### 2.3 Solve the following equations.
##### 2.3.1 Solve \( 3^{x} = 81 \)
1. Rewrite \( 81 \) as \( 3^{4} \).
2. Thus, \( 3^{x} = 3^{4} \) implies \( x = 4 \).
**Answer:** \( x = 4 \)
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución