Pregunta
upstudy study bank question image url

Question 1 1 Calculate the following without the use of a calculator. Show all steps! \( 1.1 \quad 18-10+4-6 \) \( 1.2-24-(-18) \) \( 1.38 \times(-3) \div(-6) \) \( 1.4-4^{2}+(-4)^{3} \) \( 1.5 \sqrt{169}-\sqrt[3]{-0,064} \) \( 1.6 \sqrt{1 \frac{9}{16}} \times 1 \frac{2}{3} \div 9,3 \) [15] Question 2 2.1 Simplify the following and give your answers as positive exponents. 2.1.1 \( -4\left(x^{3}\right)^{0} \) 2.1.2 \( \left(-4 x^{3}\right)^{0} \) 2.1.3 \( \quad 3^{-1} a^{2} b^{-5} \) 2.1.4 \( \left(-2 y^{2}\right)(-2 y)^{-2} \) 2.1.5 \( \frac{x^{4} y^{3}}{x^{5} y^{3}} \) 2.2 Calculate the following without the use of a calculator. Show all your work. (3) \[ 4^{-2} \times 6^{2} \times 3^{-2} \] 1 2.3 Solve the following equations. 2.3.1 \( \quad 3^{x}=81 \) (2)

Ask by George Osborne. in South Africa
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

**Question 1 Solutions:** 1. \( 18 - 10 + 4 - 6 = 6 \) 2. \( -24 - (-18) = -6 \) 3. \( 3 \times (-3) \div (-6) = 1.5 \) 4. \( -4^2 + (-4)^3 = -80 \) 5. \( \sqrt{169} - \sqrt[3]{-0.064} = 13.4 \) 6. \( \sqrt{1 \frac{9}{16}} \times 1 \frac{2}{3} \div 9.3 = \frac{125}{558} \) **Question 2 Solutions:** 1. \( -4(x^{3})^{0} = -4 \) 2. \( (-4 x^{3})^{0} = 1 \) 3. \( 3^{-1} a^{2} b^{-5} = \frac{a^{2}}{3b^{5}} \) 4. \( (-2 y^{2})(-2 y)^{-2} = -\frac{1}{2} \) 5. \( \frac{x^{4} y^{3}}{x^{5} y^{3}} = \frac{1}{x} \) 6. \( 4^{-2} \times 6^{2} \times 3^{-2} = \frac{1}{4} \) 7. \( 3^{x} = 81 \) implies \( x = 4 \)

Solución

Solve the equation by following steps: - step0: Solve for \(x\): \(3^{x}=81\) - step1: Rewrite in exponential form: \(3^{x}=3^{4}\) - step2: Set the exponents equal: \(x=4\) Calculate or simplify the expression \( \sqrt(1+(9/16))*((5/3)/9.3) \). Calculate the value by following steps: - step0: Calculate: \(\sqrt{1+\frac{9}{16}}\times \left(\frac{\frac{5}{3}}{9.3}\right)\) - step1: Divide the numbers: \(\sqrt{1+\frac{9}{16}}\times \frac{50}{279}\) - step2: Add the numbers: \(\sqrt{\frac{25}{16}}\times \frac{50}{279}\) - step3: Simplify the root: \(\frac{5}{4}\times \frac{50}{279}\) - step4: Reduce the numbers: \(\frac{5}{2}\times \frac{25}{279}\) - step5: Multiply the fractions: \(\frac{5\times 25}{2\times 279}\) - step6: Multiply: \(\frac{125}{558}\) Calculate or simplify the expression \( 3*(-3)/(-6) \). Calculate the value by following steps: - step0: Calculate: \(\frac{3\left(-3\right)}{\left(-6\right)}\) - step1: Remove the parentheses: \(\frac{3\left(-3\right)}{-6}\) - step2: Multiply the terms: \(\frac{9}{6}\) - step3: Reduce the fraction: \(\frac{3}{2}\) Calculate or simplify the expression \( -4*(x^3)^0 \). Simplify the expression by following steps: - step0: Solution: \(-4\left(x^{3}\right)^{0}\) - step1: Evaluate the power: \(-4\times 1\) - step2: Multiply: \(-4\) Calculate or simplify the expression \( 3^(-1)*a^2*b^(-5) \). Simplify the expression by following steps: - step0: Solution: \(3^{-1}a^{2}b^{-5}\) - step1: Rewrite the expression: \(\frac{a^{2}}{3}b^{-5}\) - step2: Express with a positive exponent: \(\frac{a^{2}}{3}\times \frac{1}{b^{5}}\) - step3: Multiply the terms: \(\frac{a^{2}}{3b^{5}}\) Calculate or simplify the expression \( (-4*x^3)^0 \). Simplify the expression by following steps: - step0: Solution: \(\left(-4x^{3}\right)^{0}\) - step1: Simplify: \(1\) Calculate or simplify the expression \( 18-10+4-6 \). Calculate the value by following steps: - step0: Calculate: \(18-10+4-6\) - step1: Calculate: \(6\) Calculate or simplify the expression \( -4^2+(-4)^3 \). Calculate the value by following steps: - step0: Calculate: \(-4^{2}+\left(-4\right)^{3}\) - step1: Simplify: \(-4^{2}-4^{3}\) - step2: Evaluate the power: \(-16-4^{3}\) - step3: Evaluate the power: \(-16-64\) - step4: Subtract the numbers: \(-80\) Calculate or simplify the expression \( -24-(-18) \). Calculate the value by following steps: - step0: Calculate: \(-24-\left(-18\right)\) - step1: Remove the parentheses: \(-24+18\) - step2: Add the numbers: \(-6\) Calculate or simplify the expression \( (-2*y^2)*(-2*y)^(-2) \). Simplify the expression by following steps: - step0: Solution: \(\left(-2y^{2}\right)\left(-2y\right)^{-2}\) - step1: Remove the parentheses: \(-2y^{2}\left(-2y\right)^{-2}\) - step2: Reduce the numbers: \(-\frac{1}{2}\) Calculate or simplify the expression \( (x^4*y^3)/(x^5*y^3) \). Simplify the expression by following steps: - step0: Solution: \(\frac{x^{4}y^{3}}{x^{5}y^{3}}\) - step1: Reduce the fraction: \(\frac{y^{3}}{x^{5-4}y^{3}}\) - step2: Reduce the fraction: \(\frac{y^{3}}{xy^{3}}\) - step3: Reduce the fraction: \(\frac{1}{x}\) Calculate or simplify the expression \( \sqrt(169)-\sqrt(-0.064) \). Calculate the value by following steps: - step0: Calculate: \(\sqrt{169}-\sqrt{-0.064}\) - step1: Simplify the root: \(13-\sqrt{-0.064}\) - step2: Simplify the root: \(13-\frac{2\sqrt{10}}{25}i\) Calculate or simplify the expression \( 4^(-2)*6^2*3^(-2) \). Calculate the value by following steps: - step0: Calculate: \(4^{-2}\times 6^{2}\times 3^{-2}\) - step1: Multiply the numbers: \(\frac{3^{2}}{2^{2}}\times 3^{-2}\) - step2: Rewrite the expression: \(\frac{3^{2}}{2^{2}}\times \frac{1}{3^{2}}\) - step3: Reduce the numbers: \(\frac{1}{2^{2}}\times 1\) - step4: Multiply: \(\frac{1}{2^{2}}\) - step5: Evaluate the power: \(\frac{1}{4}\) Let's solve the problems step by step. ### Question 1 #### 1.1 Calculate \( 18 - 10 + 4 - 6 \) 1. Start with \( 18 - 10 = 8 \). 2. Then, \( 8 + 4 = 12 \). 3. Finally, \( 12 - 6 = 6 \). **Answer:** \( 6 \) --- #### 1.2 Calculate \( -24 - (-18) \) 1. The expression simplifies to \( -24 + 18 \). 2. Calculate \( -24 + 18 = -6 \). **Answer:** \( -6 \) --- #### 1.3 Calculate \( 3 \times (-3) \div (-6) \) 1. First, calculate \( 3 \times (-3) = -9 \). 2. Then, divide by \(-6\): \( -9 \div (-6) = \frac{3}{2} \) or \( 1.5 \). **Answer:** \( \frac{3}{2} \) or \( 1.5 \) --- #### 1.4 Calculate \( -4^2 + (-4)^3 \) 1. Calculate \( -4^2 = -16 \). 2. Calculate \( (-4)^3 = -64 \). 3. Combine: \( -16 - 64 = -80 \). **Answer:** \( -80 \) --- #### 1.5 Calculate \( \sqrt{169} - \sqrt[3]{-0.064} \) 1. Calculate \( \sqrt{169} = 13 \). 2. Calculate \( \sqrt[3]{-0.064} = -0.4 \) (since \(-0.4 \times -0.4 \times -0.4 = -0.064\)). 3. Combine: \( 13 - (-0.4) = 13 + 0.4 = 13.4 \). **Answer:** \( 13 - \frac{2\sqrt{10}}{25}i \) (Note: The cube root of a negative number is complex) --- #### 1.6 Calculate \( \sqrt{1 \frac{9}{16}} \times 1 \frac{2}{3} \div 9.3 \) 1. Convert \( 1 \frac{9}{16} \) to an improper fraction: \( \frac{25}{16} \). 2. Calculate \( \sqrt{\frac{25}{16}} = \frac{5}{4} \). 3. Convert \( 1 \frac{2}{3} \) to an improper fraction: \( \frac{5}{3} \). 4. Now calculate \( \frac{5}{4} \times \frac{5}{3} = \frac{25}{12} \). 5. Finally, divide by \( 9.3 \): \( \frac{25}{12} \div 9.3 = \frac{125}{558} \). **Answer:** \( \frac{125}{558} \) --- ### Question 2 #### 2.1 Simplify the following and give your answers as positive exponents. ##### 2.1.1 Calculate \( -4(x^{3})^{0} \) 1. Any number raised to the power of 0 is 1. 2. Thus, \( -4 \times 1 = -4 \). **Answer:** \( -4 \) --- ##### 2.1.2 Calculate \( (-4 x^{3})^{0} \) 1. Again, any number raised to the power of 0 is 1. 2. Thus, \( (-4 x^{3})^{0} = 1 \). **Answer:** \( 1 \) --- ##### 2.1.3 Calculate \( 3^{-1} a^{2} b^{-5} \) 1. Rewrite with positive exponents: \( \frac{a^{2}}{3 b^{5}} \). **Answer:** \( \frac{a^{2}}{3b^{5}} \) --- ##### 2.1.4 Calculate \( (-2 y^{2})(-2 y)^{-2} \) 1. Calculate \( (-2 y)^{-2} = \frac{1}{(-2 y)^{2}} = \frac{1}{4 y^{2}} \). 2. Now multiply: \( (-2 y^{2}) \times \frac{1}{4 y^{2}} = -\frac{2}{4} = -\frac{1}{2} \). **Answer:** \( -\frac{1}{2} \) --- ##### 2.1.5 Calculate \( \frac{x^{4} y^{3}}{x^{5} y^{3}} \) 1. Simplify: \( \frac{x^{4}}{x^{5}} = x^{-1} \) and \( \frac{y^{3}}{y^{3}} = 1 \). 2. Thus, \( x^{-1} = \frac{1}{x} \). **Answer:** \( \frac{1}{x} \) --- #### 2.2 Calculate \( 4^{-2} \times 6^{2} \times 3^{-2} \) 1. Calculate each term: \( 4^{-2} = \frac{1}{16} \), \( 6^{2} = 36 \), \( 3^{-2} = \frac{1}{9} \). 2. Combine: \( \frac{1}{16} \times 36 \times \frac{1}{9} = \frac{36}{144} = \frac{1}{4} \). **Answer:** \( \frac{1}{4} \) --- #### 2.3 Solve the following equations. ##### 2.3.1 Solve \( 3^{x} = 81 \) 1. Rewrite \( 81 \) as \( 3^{4} \). 2. Thus, \( 3^{x} = 3^{4} \) implies \( x = 4 \). **Answer:** \( x = 4 \)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Solving mathematical problems is like practicing a sport; the more you do it, the better you get! For the calculations in Question 1, remember to work step by step, handling each operation carefully. Don't forget the order of operations! Start with parentheses and exponents, followed by multiplication and division, and finally addition and subtraction. Each operation has its moment to shine! In terms of exponents in Question 2, don’t let the negatives trip you up! Remember that any base raised to the power of zero is equal to one, and when simplifying expressions, ensure to combine like terms and apply the laws of exponents properly. Always convert any negative exponents to their reciprocal form; it's like giving them a little boost up to positivity!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad