Pregunta
upstudy study bank question image url

1.3.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) CASE 3: \( r=1 \) 1.4.1 What is the sum of the geometric series \( S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \) if \( r=1 \) ? 1.4.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \)

Ask by Bowman Tran. in South Africa
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

When \( r = 1 \), each term in the geometric series is \( a \), so the sum \( S_n = n \times a \). As \( n \) approaches infinity, \( S_n \) grows without bound.

Solución

We begin by recalling that for a geometric series with first term a and common ratio r, the partial sum is   Sₙ = a + a·r + a·r² + … + a·rⁿ⁻¹. A. For the general case (not necessarily r = 1), you may observe that:  • If |r| < 1, then as n → ∞ the term rⁿ → 0, and the partial sums Sₙ approach a finite value (namely a/(1 – r)).  • If |r| > 1, then rⁿ grows without bound in absolute value and so do the partial sums Sₙ (they diverge). B. CASE 3: r = 1 1.4.1 When r = 1, each term in the series is simply a. There are n terms, so the sum is   Sₙ = a + a + a + … + a  (n times) = n·a. 1.4.2 As n → ∞:  • Notice that rⁿ = 1ⁿ = 1 for all n. That is, the term rⁿ remains constant (equal to 1) and does not approach 0, unlike the case when |r| < 1.  • The sum Sₙ = n·a grows without bound for a ≠ 0; more specifically, it increases linearly as n increases. Conjecture Summary:  – In general, the behavior of rⁿ as n → ∞ depends on the magnitude of r:   • If |r| < 1, then rⁿ → 0.   • If |r| = 1 (here r = 1), then rⁿ remains 1 for all n.   • If |r| > 1, then rⁿ diverges (grows in magnitude without bound).  – Correspondingly, the partial sum Sₙ of the geometric series approaches a finite limit only when |r| < 1; when r = 1, Sₙ = n·a increases without bound (if a ≠ 0), and similarly for |r| > 1 the sum diverges. Thus, for r = 1 we conclude that while rⁿ is a constant 1 for all n, the sum Sₙ = n·a grows indefinitely as n → ∞.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

When \( r = 1 \), the series becomes \( S_{n} = a + a + a + \ldots + a \), which simply means you're adding the same number \( a \) a total of \( n \) times. Therefore, the sum \( S_{n} = na \). As \( n \) approaches infinity, the sum will continue to grow indefinitely, signaling that the series diverges unless \( a = 0 \). As \( n \rightarrow \infty \), \( r^{n} \) remains 1 for any non-zero \( r \) since \( 1^{n} = 1\). Therefore, in this case, we can conjecture that \( S_{n} \) diverges to infinity (i.e., it grows indefinitely), signifying that the apparent common ratio does not contribute to a finite limit in this scenario.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad