Pregunta

Does the system of linear equations showm below have a solution? Explain. \[ \left\{\begin{array}{l} \frac{3}{4} x-3=y \quad y \geq \frac{1}{4} \\ 4 x-3 y=5 \end{array}\right. \]

Ask by Johnson Newton. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The system has no solution because the calculated value of y is less than 1/4.

Solución

We are given the system   (1) (3/4)x – 3 = y  with y ≥ 1/4   (2) 4x – 3y = 5 Step 1. Substitute Equation (1) into Equation (2):   4x – 3[(3/4)x – 3] = 5 Step 2. Simplify the equation:   4x – (9/4)x + 9 = 5 Multiply the entire equation by 4 to eliminate fractions:   16x – 9x + 36 = 20 Simplify:   7x + 36 = 20 Step 3. Solve for x:   7x = 20 – 36 = –16   x = –16/7 Step 4. Substitute x back into Equation (1) to find y:   y = (3/4)(–16/7) – 3 = –12/7 – 3 Express 3 as 21/7:   y = –12/7 – 21/7 = –33/7 Step 5. Check the inequality condition: The system requires y ≥ 1/4. However, we calculated y = –33/7, which is approximately –4.714, and clearly –4.714 < 0.25. Conclusion: Although the two equations intersect at (x, y) = (–16/7, –33/7), this point does not satisfy the condition that y ≥ 1/4. Therefore, the system has no solution.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To determine if the system of linear equations has a solution, we can analyze the equations one by one. The first equation \(\frac{3}{4} x - 3 = y\) can be rewritten to express \(y\) in terms of \(x\), giving \(y = \frac{3}{4} x - 3\). The second equation \(4x - 3y = 5\) can also be rearranged to express \(y\) as \(y = \frac{4}{3} x - \frac{5}{3}\). The next step is to set the two expressions for \(y\) equal to each other to find \(x\). Solving \(\frac{3}{4} x - 3 = \frac{4}{3} x - \frac{5}{3}\) leads us to a common variable value. However, we should also ensure that any solution satisfies the additional constraint \(y \geq \frac{1}{4}\). After solving for \(x\), plugging it back into one of the equations will yield a \(y\) value. If this \(y\) is greater than or equal to \(\frac{1}{4}\), then the system has a solution; otherwise, it does not. This means to visualize the solution, you can graph the lines represented by both equations in Cartesian coordinates. The point of intersection gives the solution to the system, and you need to verify if this point meets the specified inequality. If they intersect within the valid range, there is a solution; if not, then no solution exists!

preguntas relacionadas

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Álgebra Mexico Feb 26, 2025
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad