Pregunta
upstudy study bank question image url

A Hooke's law spring is mounted horizontally over a frictionless surface. The spring is then compressed a distance \( d \) and is used to launch a mass \( m \) along the frictionless surface. What compression of the spring would result in the mass attaining double the speed received in the above situation? 1) \( 1.41 d \) 2) \( 1.73 d \) 3) \( 2.00 d \) 4) \( 4.00 d \) 5) \( 5.35 d \)

Ask by Chambers Maxwell. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To double the speed of the mass, the spring must be compressed twice as much, so \( 2.00 d \).

Solución

The kinetic energy given to the mass is equal to the elastic potential energy stored in the spring. For a spring compressed by a distance d, the potential energy is   PE = (1/2) k d². When the spring is released, this energy becomes kinetic energy (KE) of the mass m:   (1/2) k d² = (1/2) m v²      (1) Now, suppose we want the mass to have twice the original speed, i.e., 2v. The kinetic energy for the new launch would be   KE_new = (1/2) m (2v)² = (1/2) m (4v²) = 2 m v². We want this KE_new to come from the spring potential energy when compressed by an unknown distance d_new:   (1/2) k d_new² = 2 m v²      (2) From equation (1), we have:   (1/2) m v² = (1/2) k d². Substituting m v² from equation (1) into equation (2):   (1/2) k d_new² = 2 × [(1/2) k d²]  → (1/2) k d_new² = k d². Canceling (1/2) k from both sides:   d_new² = 2 × 2 d²    [Actually, correctly: dividing both sides by (1/2)k gives:]   d_new² = 4 d² Taking the square root of both sides:   d_new = 2 d. Thus, to double the speed, you must compress the spring a distance of 2.00 d. The correct answer is: 2) 2.00 d. (Note: Among the provided choices, 2.00 d corresponds to option 3.)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To make the mass \( m \) reach double the speed, we can use the concept of energy. The potential energy stored in the spring when compressed a distance \( d \) can be expressed with Hooke's Law as \( \frac{1}{2} k d^2 \), where \( k \) is the spring constant. The kinetic energy when the mass exits the spring is given by \( \frac{1}{2} mv^2 \). If we want the mass to attain double the original speed, \( 2v \), its kinetic energy becomes \( \frac{1}{2} m (2v)^2 = 2mv^2 \). The ratio of energies gives us \( 2mv^2/\frac{1}{2} k d^2 = 4 \) leading to the new compression being \( d' = 2d \) or even more specifically, we need to double the original energy, which corresponds to \( 4d^2 \times k/2 = 4\%, \) resulting in a compression of \( 2d \). So, looking at the problem, we can deduce that the answer is \( 4.00 d \). In summary, the answer is option 4: \( 4.00 d \).

preguntas relacionadas

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad