Pregunta
\( -3 w+1>(w-2)-4 w \) Part: \( 0 / 3 \) Part 1 of 3 The solution set in set-builder notation is \( \square \).
Ask by Wood King. in the United States
Feb 25,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The solution set is all real numbers \( w \in \mathbb{R} \).
Solución
Solve the equation \( -3w+1>(w-2)-4w \).
Solve the inequality by following steps:
- step0: Solve for \(w\):
\(-3w+1>\left(w-2\right)-4w\)
- step1: Simplify:
\(-3w+1>-3w-2\)
- step2: Cancel equal terms:
\(1>-2\)
- step3: The statement is true:
\(w \in \mathbb{R}\)
The solution set in set-builder notation is \( w \in \mathbb{R} \).
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Mind Expander
To solve the inequality \( -3w + 1 > (w - 2) - 4w \), first simplify the right side: 1. Distribute and combine like terms: \[ -3w + 1 > w - 2 - 4w \] \[ -3w + 1 > -3w - 2 \] 2. Add \( 3w \) to both sides: \[ 1 > -2 \] This tells us that the inequality is always true, meaning all real numbers are solutions. In set-builder notation, this is expressed as: \[ \{ w | w \in \mathbb{R} \} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium