A curve \( C \) is defined by the parameric equations: \( \begin{array}{l}x=3+4 \operatorname{Cos} \theta \\ y=1+4 \operatorname{Sin} \theta\end{array} \) (i) Show that the equation of \( C \) represents a circl (ii) State the centre and radius of the circle.
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Beyond the Answer
To show that the curve \( C \) represents a circle, we start with the parametric equations given: \[ x = 3 + 4 \cos \theta \] \[ y = 1 + 4 \sin \theta \] Next, we can eliminate the parameter \( \theta \) by using the identities \( \cos^2 \theta + \sin^2 \theta = 1 \). 1. **Rearranging the equations**: We can express \( \cos \theta \) and \( \sin \theta \): \[ \cos \theta = \frac{x - 3}{4}, \quad \sin \theta = \frac{y - 1}{4} \] 2. **Substituting into the identity**: Using the identity, we substitute these expressions: \[ \left(\frac{x - 3}{4}\right)^2 + \left(\frac{y - 1}{4}\right)^2 = 1 \] Simplifying this, we have: \[ \frac{(x - 3)^2}{16} + \frac{(y - 1)^2}{16} = 1 \] Multiplying through by 16 yields: \[ (x - 3)^2 + (y - 1)^2 = 16 \] This equation represents a circle, confirming that curve \( C \) is indeed a circle. (ii) The center of the circle is given by the point \((h, k)\) from the standard form \((x - h)^2 + (y - k)^2 = r^2\). From our derived equation: - Center: \((3, 1)\) - Radius: \( r = \sqrt{16} = 4\) So, the circle has center \((3, 1)\) and radius \(4\).
