Pregunta
upstudy study bank question image url

A curve \( C \) is defined by the parameric equations: \( \begin{array}{l}x=3+4 \operatorname{Cos} \theta \\ y=1+4 \operatorname{Sin} \theta\end{array} \) (i) Show that the equation of \( C \) represents a circl (ii) State the centre and radius of the circle.

Ask by Dawson Parsons. in Zimbabwe
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The curve \( C \) is a circle with center at \( (3, 1) \) and a radius of \( 4 \).

Solución

To solve the problem, we will follow these steps: ### Step 1: Show that the equation of \( C \) represents a circle The parametric equations given are: \[ x = 3 + 4 \cos \theta \] \[ y = 1 + 4 \sin \theta \] We can eliminate the parameter \( \theta \) to find a relationship between \( x \) and \( y \). 1. Rearranging the equations for \( \cos \theta \) and \( \sin \theta \): \[ \cos \theta = \frac{x - 3}{4} \] \[ \sin \theta = \frac{y - 1}{4} \] 2. Using the Pythagorean identity \( \cos^2 \theta + \sin^2 \theta = 1 \): \[ \left(\frac{x - 3}{4}\right)^2 + \left(\frac{y - 1}{4}\right)^2 = 1 \] 3. Multiplying through by \( 16 \) to eliminate the denominators: \[ (x - 3)^2 + (y - 1)^2 = 16 \] This is the standard form of the equation of a circle, which confirms that the curve \( C \) represents a circle. ### Step 2: State the centre and radius of the circle From the equation \( (x - 3)^2 + (y - 1)^2 = 16 \): - The center of the circle is given by the point \( (h, k) \) where \( h = 3 \) and \( k = 1 \). - The radius \( r \) is the square root of the right-hand side, which is \( \sqrt{16} = 4 \). ### Final Answer (i) The equation of \( C \) represents a circle. (ii) The center of the circle is \( (3, 1) \) and the radius is \( 4 \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To show that the curve \( C \) represents a circle, we start with the parametric equations given: \[ x = 3 + 4 \cos \theta \] \[ y = 1 + 4 \sin \theta \] Next, we can eliminate the parameter \( \theta \) by using the identities \( \cos^2 \theta + \sin^2 \theta = 1 \). 1. **Rearranging the equations**: We can express \( \cos \theta \) and \( \sin \theta \): \[ \cos \theta = \frac{x - 3}{4}, \quad \sin \theta = \frac{y - 1}{4} \] 2. **Substituting into the identity**: Using the identity, we substitute these expressions: \[ \left(\frac{x - 3}{4}\right)^2 + \left(\frac{y - 1}{4}\right)^2 = 1 \] Simplifying this, we have: \[ \frac{(x - 3)^2}{16} + \frac{(y - 1)^2}{16} = 1 \] Multiplying through by 16 yields: \[ (x - 3)^2 + (y - 1)^2 = 16 \] This equation represents a circle, confirming that curve \( C \) is indeed a circle. (ii) The center of the circle is given by the point \((h, k)\) from the standard form \((x - h)^2 + (y - k)^2 = r^2\). From our derived equation: - Center: \((3, 1)\) - Radius: \( r = \sqrt{16} = 4\) So, the circle has center \((3, 1)\) and radius \(4\).

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad