Responder
Here are the solutions for each quadratic equation:
a. \( x = 0 \) or \( x = 11 \)
b. \( x = 0 \) or \( x = 1.5 \)
c. \( x = 0 \) or \( x = 0.8333 \)
d. \( x = -0.6 \) or \( x = 2 \)
e. \( x = -2 \) or \( x = 4 \)
f. \( x = 7 \) or \( x = 7.2 \)
i. \( x = 3 \)
Solución
Solve the quadratic equation by following steps:
- step0: Solve by factoring:
\(x^{2}-11x=0\)
- step1: Factor the expression:
\(x\left(x-11\right)=0\)
- step2: Separate into possible cases:
\(\begin{align}&x-11=0\\&x=0\end{align}\)
- step3: Solve the equation:
\(\begin{align}&x=11\\&x=0\end{align}\)
- step4: Rewrite:
\(x_{1}=0,x_{2}=11\)
Solve the equation \( (x-3)^{2}=x(x-3) \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(\left(x-3\right)^{2}=x\left(x-3\right)\)
- step1: Multiply the terms:
\(\left(x-3\right)^{2}=x^{2}-3x\)
- step2: Expand the expression:
\(x^{2}-6x+9=x^{2}-3x\)
- step3: Cancel equal terms:
\(-6x+9=-3x\)
- step4: Move the variable to the left side:
\(-6x+9+3x=0\)
- step5: Add the terms:
\(-3x+9=0\)
- step6: Move the constant to the right side:
\(-3x=0-9\)
- step7: Remove 0:
\(-3x=-9\)
- step8: Change the signs:
\(3x=9\)
- step9: Divide both sides:
\(\frac{3x}{3}=\frac{9}{3}\)
- step10: Divide the numbers:
\(x=3\)
Solve the equation \( 12 x^{2}=10 x \).
Solve the quadratic equation by following steps:
- step0: Solve by factoring:
\(12x^{2}=10x\)
- step1: Move the expression to the left side:
\(12x^{2}-10x=0\)
- step2: Factor the expression:
\(2x\left(6x-5\right)=0\)
- step3: Separate into possible cases:
\(\begin{align}&6x-5=0\\&2x=0\end{align}\)
- step4: Solve the equation:
\(\begin{align}&x=\frac{5}{6}\\&x=0\end{align}\)
- step5: Rewrite:
\(x_{1}=0,x_{2}=\frac{5}{6}\)
Solve the equation \( 2 x^{2}=3 x \).
Solve the quadratic equation by following steps:
- step0: Solve by factoring:
\(2x^{2}=3x\)
- step1: Move the expression to the left side:
\(2x^{2}-3x=0\)
- step2: Factor the expression:
\(x\left(2x-3\right)=0\)
- step3: Separate into possible cases:
\(\begin{align}&2x-3=0\\&x=0\end{align}\)
- step4: Solve the equation:
\(\begin{align}&x=\frac{3}{2}\\&x=0\end{align}\)
- step5: Rewrite:
\(x_{1}=0,x_{2}=\frac{3}{2}\)
Solve the equation \( 5 x(x-2)+3(x-2)=0 \).
Solve the quadratic equation by following steps:
- step0: Solve by factoring:
\(5x\left(x-2\right)+3\left(x-2\right)=0\)
- step1: Factor the expression:
\(\left(x-2\right)\left(5x+3\right)=0\)
- step2: Separate into possible cases:
\(\begin{align}&x-2=0\\&5x+3=0\end{align}\)
- step3: Solve the equation:
\(\begin{align}&x=2\\&x=-\frac{3}{5}\end{align}\)
- step4: Rewrite:
\(x_{1}=-\frac{3}{5},x_{2}=2\)
Solve the equation \( (2 x-3)(x+2)-5(x+2)=0 \).
Solve the quadratic equation by following steps:
- step0: Solve by factoring:
\(\left(2x-3\right)\left(x+2\right)-5\left(x+2\right)=0\)
- step1: Factor the expression:
\(\left(x+2\right)\left(2x-3-5\right)=0\)
- step2: Separate into possible cases:
\(\begin{align}&2x-3-5=0\\&x+2=0\end{align}\)
- step3: Solve the equation:
\(\begin{align}&x=4\\&x=-2\end{align}\)
- step4: Rewrite:
\(x_{1}=-2,x_{2}=4\)
Solve the equation \( 5(x-7)^{2}-(x-7)=0 \).
Solve the quadratic equation by following steps:
- step0: Solve by factoring:
\(5\left(x-7\right)^{2}-\left(x-7\right)=0\)
- step1: Remove the parentheses:
\(5\left(x-7\right)^{2}-x+7=0\)
- step2: Expand the expression:
\(5x^{2}-71x+252=0\)
- step3: Factor the expression:
\(\left(x-7\right)\left(5x-36\right)=0\)
- step4: Separate into possible cases:
\(\begin{align}&5x-36=0\\&x-7=0\end{align}\)
- step5: Solve the equation:
\(\begin{align}&x=\frac{36}{5}\\&x=7\end{align}\)
- step6: Rewrite:
\(x_{1}=7,x_{2}=\frac{36}{5}\)
Here are the solutions for each of the quadratic equations:
a. For the equation \( x^{2}-11 x=0 \):
- Factoring gives \( x(x - 11) = 0 \).
- Thus, the solutions are:
\[
x_{1} = 0, \quad x_{2} = 11
\]
b. For the equation \( 2 x^{2}=3 x \):
- Rearranging gives \( 2x^{2} - 3x = 0 \).
- Factoring gives \( x(2x - 3) = 0 \).
- Thus, the solutions are:
\[
x_{1} = 0, \quad x_{2} = \frac{3}{2} \quad \text{(or } 1.5\text{)}
\]
c. For the equation \( 12 x^{2}=10 x \):
- Rearranging gives \( 12x^{2} - 10x = 0 \).
- Factoring gives \( 2x(6x - 5) = 0 \).
- Thus, the solutions are:
\[
x_{1} = 0, \quad x_{2} = \frac{5}{6} \quad \text{(or } 0.8333\text{)}
\]
d. For the equation \( 5 x(x-2)+3(x-2)=0 \):
- Factoring gives \( (x - 2)(5x + 3) = 0 \).
- Thus, the solutions are:
\[
x_{1} = -\frac{3}{5} \quad \text{(or } -0.6\text{)}, \quad x_{2} = 2
\]
e. For the equation \( (2 x-3)(x+2)-5(x+2)=0 \):
- Factoring gives \( (x + 2)(2x - 8) = 0 \).
- Thus, the solutions are:
\[
x_{1} = -2, \quad x_{2} = 4
\]
f. For the equation \( 5(x-7)^{2}-(x-7)=0 \):
- Factoring gives \( (x - 7)(5(x - 7) - 1) = 0 \).
- Thus, the solutions are:
\[
x_{1} = 7, \quad x_{2} = \frac{36}{5} \quad \text{(or } 7.2\text{)}
\]
i. For the equation \( (x-3)^{2}=x(x-3) \):
- Rearranging gives \( (x - 3)(x - 3 - x) = 0 \).
- Thus, the solution is:
\[
x = 3
\]
These are the solutions for each of the quadratic equations provided.
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución