Pregunta
upstudy study bank question image url

Find all solution of the equations in the interval \( [0,2 \pi] \) 11. \( 2 \sin x+\sqrt{3}=0 \) 12. \( (\cos x-1)(\sin x+1)=0 \) 13. \( 2 \cos ^{2} t+3 \cos t+1=0 \)

Ask by Howell Pritchard. in Malaysia
Dec 03,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

11. \( x = \frac{4\pi}{3}, \frac{5\pi}{3} \) 12. \( x = 0, \frac{3\pi}{2} \) 13. \( t = \frac{2\pi}{3}, \frac{4\pi}{3}, \pi \)

Solución

Let's solve each equation one by one in the interval \( [0, 2\pi] \). ### 11. \( 2 \sin x + \sqrt{3} = 0 \) First, we isolate \( \sin x \): \[ 2 \sin x = -\sqrt{3} \] \[ \sin x = -\frac{\sqrt{3}}{2} \] The sine function is negative in the third and fourth quadrants. The angles where \( \sin x = -\frac{\sqrt{3}}{2} \) are: \[ x = \frac{4\pi}{3}, \quad \frac{5\pi}{3} \] Thus, the solutions for this equation in the interval \( [0, 2\pi] \) are: \[ \boxed{\left\{ \frac{4\pi}{3}, \frac{5\pi}{3} \right\}} \] ### 12. \( (\cos x - 1)(\sin x + 1) = 0 \) This equation can be solved by setting each factor to zero. 1. **For \( \cos x - 1 = 0 \)**: \[ \cos x = 1 \] The solution in the interval \( [0, 2\pi] \) is: \[ x = 0 \] 2. **For \( \sin x + 1 = 0 \)**: \[ \sin x = -1 \] The solution in the interval \( [0, 2\pi] \) is: \[ x = \frac{3\pi}{2} \] Thus, the solutions for this equation in the interval \( [0, 2\pi] \) are: \[ \boxed{\{ 0, \frac{3\pi}{2} \}} \] ### 13. \( 2 \cos^2 t + 3 \cos t + 1 = 0 \) This is a quadratic equation in terms of \( \cos t \). Let \( u = \cos t \). The equation becomes: \[ 2u^2 + 3u + 1 = 0 \] We can use the quadratic formula \( u = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ u = \frac{-3 \pm \sqrt{3^2 - 4 \cdot 2 \cdot 1}}{2 \cdot 2} \] \[ u = \frac{-3 \pm \sqrt{9 - 8}}{4} \] \[ u = \frac{-3 \pm 1}{4} \] Calculating the two possible values: 1. \( u = \frac{-3 + 1}{4} = \frac{-2}{4} = -\frac{1}{2} \) 2. \( u = \frac{-3 - 1}{4} = \frac{-4}{4} = -1 \) Now we find \( t \) for each value of \( u \): 1. **For \( \cos t = -\frac{1}{2} \)**: The angles in the interval \( [0, 2\pi] \) are: \[ t = \frac{2\pi}{3}, \quad \frac{4\pi}{3} \] 2. **For \( \cos t = -1 \)**: The angle in the interval \( [0, 2\pi] \) is: \[ t = \pi \] Thus, the solutions for this equation in the interval \( [0, 2\pi] \) are: \[ \boxed{\left\{ \frac{2\pi}{3}, \frac{4\pi}{3}, \pi \right\}} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

For the first equation, \( 2 \sin x + \sqrt{3} = 0 \), you can rearrange it to find \( \sin x = -\frac{\sqrt{3}}{2} \). The solutions in the interval \( [0, 2\pi] \) occur where the sine function is negative, specifically in the third and fourth quadrants, giving us \( x = \frac{4\pi}{3} \) and \( x = \frac{5\pi}{3} \). For the second equation, \( (\cos x - 1)(\sin x + 1) = 0 \), you can separate it into two parts. Setting \( \cos x - 1 = 0 \) leads to \( \cos x = 1 \), giving \( x = 0 \). Setting \( \sin x + 1 = 0 \) leads to \( \sin x = -1 \), giving \( x = \frac{3\pi}{2} \). Thus, the solutions in \( [0, 2\pi] \) are \( x = 0 \) and \( x = \frac{3\pi}{2} \). For the third equation \( 2 \cos^2 t + 3 \cos t + 1 = 0 \), this is a quadratic in terms of \( \cos t \). Letting \( u = \cos t \), the equation becomes \( 2u^2 + 3u + 1 = 0 \). Using the quadratic formula, you find \( u = \frac{-3 \pm \sqrt{3}}{4} \). This gives two values for \( \cos t \), which you can further analyze to find the corresponding angles that satisfy \( t \) between \( 0 \) and \( 2\pi \).

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad