PART 3: DEDUCTION AND APPLICATION: Do not use a calculator when answering Part 3. 3.1 Apply the compound angle expansion \( \sin (x+y)=\sin x \cos y+\cos x \sin y \) to \( \sin 2 x \) and simplify your answer: \[ \begin{aligned} \sin 2 x & =\sin (x+x) \\ & =\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\ & =\ldots \ldots \ldots \ldots \end{aligned} \] \( \qquad \) \( \qquad \) 3.2 Expand cach of the following, using your answer from 3.1: 3.2 .1 sin \( 100^{\circ}= \), \( \qquad \) (I) \( 3.2 .2 \sin 46^{\circ}= \) \( \qquad \) (1) 3.2.3 \( \sin 40= \). \( \qquad \) (1) 3.3. Write each of the following expressions as a single trigonometric ratio: 3.3.1 \( 2 \sin 19^{\circ} \cdot \cos 19^{\circ}= \). \( \qquad \) (1) 3.3.2 \( 2 \cos 40^{\circ} \cdot \sin 40^{\circ}= \) \( \qquad \) (1) 3.3.3 \( \sin 25^{\circ} \cos 155^{\circ}= \) \( \qquad \) 3
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Extra Insights
\[ \begin{aligned} \sin 2x & = \sin(x+x) \\ & = \sin x \cos x + \cos x \sin x \\ & = 2 \sin x \cos x. \end{aligned} \] **3.2.1** To find \(\sin 100^{\circ}\), we can apply the result from 3.1: \(\sin 100^{\circ} = \sin(90^{\circ} + 10^{\circ}) = \sin 90^{\circ} \cos 10^{\circ} + \cos 90^{\circ} \sin 10^{\circ} = 1 \cdot \cos 10^{\circ} + 0 \cdot \sin 10^{\circ} = \cos 10^{\circ}.\) **3.2.2** For \(\sin 46^{\circ}\), we can also use an angle addition formula: \(\sin 46^{\circ} = \sin(45^{\circ} + 1^{\circ}) = \sin 45^{\circ} \cos 1^{\circ} + \cos 45^{\circ} \sin 1^{\circ} = \frac{\sqrt{2}}{2} \cos 1^{\circ} + \frac{\sqrt{2}}{2} \sin 1^{\circ} = \frac{\sqrt{2}}{2}(\cos 1^{\circ} + \sin 1^{\circ}).\) **3.2.3** To simplify \(\sin 40^{\circ}\), using the result from 3.1 yields: \(\sin 40^{\circ} = \sin(20^{\circ} + 20^{\circ}) = 2 \sin 20^{\circ} \cos 20^{\circ}.\) **3.3.1** For \(2 \sin 19^{\circ} \cdot \cos 19^{\circ}\), we can rewrite this as a double angle: \(2 \sin 19^{\circ} \cos 19^{\circ} = \sin(2 \times 19^{\circ}) = \sin 38^{\circ}.\) **3.3.2** Similarly, for \(2 \cos 40^{\circ} \cdot \sin 40^{\circ}\): \(2 \cos 40^{\circ} \sin 40^{\circ} = \sin(2 \times 40^{\circ}) = \sin 80^{\circ}.\) **3.3.3** Using the product-to-sum identities on \(\sin 25^{\circ} \cos 155^{\circ}\): \(\sin 25^{\circ} \cos 155^{\circ} = \frac{1}{2}(\sin(25^{\circ} + 155^{\circ}) + \sin(25^{\circ} - 155^{\circ})) = \frac{1}{2}(\sin 180^{\circ} + \sin(-130^{\circ}) = \frac{1}{2}(0 + (-\sin 130^{\circ})) = -\frac{1}{2} \sin 130^{\circ}.\)
