If \( f(x)=\frac{\sqrt{x+2}}{3-3 x^{2}} \), for which values of \( x \) is 1.2.2 \( \quad f(x) \) non real.
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Extra Insights
To determine the values of \( x \) for which \( f(x) \) is non-real, we need to analyze the function \( f(x)=\frac{\sqrt{x+2}}{3-3 x^{2}} \). The square root in the numerator imposes a condition: \( x + 2 \geq 0 \), which simplifies to \( x \geq -2 \). Additionally, we must ensure the denominator is not zero. Setting \( 3 - 3x^2 = 0 \) gives \( x^2 = 1 \), or \( x = 1 \) and \( x = -1 \). Thus, \( f(x) \) is non-real when \( x < -2 \) or when the denominator equals zero at \( x = 1 \) and \( x = -1 \), making these points undefined. So, \( f(x) \) is non-real for \( x < -2 \), \( x = 1 \), and \( x = -1 \).
