Pregunta
upstudy study bank question image url

(3). \( \sin 4 x-\cos ^{4} x=\sin ^{2} x-\cos ^{2} x \)

Ask by Marsh Campbell. in South Africa
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The solutions to the equation are \( x = \frac{\pi}{4} + \frac{n\pi}{2} \) for any integer \( n \).

Solución

The equation given is \[ \sin 4x - \cos^4 x = \sin^2 x - \cos^2 x. \] To solve this equation, we can start by simplifying both sides step by step. ### Step 1: Rewrite \(\sin 4x\) Using the double angle formula, we know that: \[ \sin 4x = 2 \sin 2x \cos 2x. \] And we can further express \(\sin 2x\) as: \[ \sin 2x = 2 \sin x \cos x. \] Thus, \[ \sin 4x = 2(2 \sin x \cos x) \cos 2x = 4 \sin x \cos x \cos 2x. \] ### Step 2: Rewrite \(\cos^4 x\) We can express \(\cos^4 x\) as: \[ \cos^4 x = (\cos^2 x)^2. \] ### Step 3: Rewrite \(\sin^2 x - \cos^2 x\) This can be rewritten using the identity: \[ \sin^2 x - \cos^2 x = -\cos 2x. \] ### Step 4: Substitute back into the equation Now substituting these back into the original equation gives us: \[ 4 \sin x \cos x \cos 2x - \cos^4 x = -\cos 2x. \] ### Step 5: Rearranging the equation Rearranging the equation leads to: \[ 4 \sin x \cos x \cos 2x + \cos 2x = \cos^4 x. \] Factoring out \(\cos 2x\) from the left side: \[ \cos 2x (4 \sin x \cos x + 1) = \cos^4 x. \] ### Step 6: Solve for \(\cos 2x\) Now we can analyze the equation. We can set \(\cos 2x = 0\) or solve for the other factor: 1. **Case 1:** \(\cos 2x = 0\) This gives us: \[ 2x = \frac{\pi}{2} + n\pi \quad \Rightarrow \quad x = \frac{\pi}{4} + \frac{n\pi}{2}, \quad n \in \mathbb{Z}. \] 2. **Case 2:** \(4 \sin x \cos x + 1 = \frac{\cos^4 x}{\cos 2x}\) This case is more complex and may require numerical methods or further algebraic manipulation. ### Conclusion The solutions from Case 1 are: \[ x = \frac{\pi}{4} + \frac{n\pi}{2}, \quad n \in \mathbb{Z}. \] For Case 2, further analysis or numerical methods may be needed to find specific solutions. Would you like to proceed with numerical methods for Case 2 or focus on the solutions from Case 1?

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To solve the equation \( \sin 4x - \cos^4 x = \sin^2 x - \cos^2 x \), we can use trigonometric identities. First, recall that \( \sin 4x = 2 \sin 2x \cos 2x \) and \( \cos^4 x = (\cos^2 x)^2 \). Next, let's express everything in terms of sine and cosine. Use the identity \( \sin^2 x + \cos^2 x = 1 \) to express one in terms of the other, then simplify and rearrange the equation. For example, transforming \( \cos^4 x \) using \( \cos^2 x = 1 - \sin^2 x \) allows us to derive relationships between \( \sin x \) and \( \cos x \) and ultimately leads to solving for \( x \). Test several angles to discover specific solutions; common angles like \( 0, \frac{\pi}{4}, \frac{\pi}{2} \) can lead to valid insights about the periodic behaviour of trigonometric functions. Lastly, double-check any derived expressions by substituting known values to ensure accuracy!

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad