Pregunta
upstudy study bank question image url

Find the exact value of each of the six trigonometric functions of \( \theta \), if \( (4,-2) \) is a point on the terminal side of angle \( \theta \). \( \sin \theta=\square \) (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression. Rationalize all denominators.)

Ask by Bush Wang. in the United States
Dec 03,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\( \sin \theta = \frac{-\sqrt{5}}{5} \)

Solución

To find the six trigonometric functions of the angle \( \theta \) given the point \( (4, -2) \) on the terminal side, we first need to determine the radius \( r \) using the coordinates \( (x, y) = (4, -2) \). The radius \( r \) is calculated using the formula: \[ r = \sqrt{x^2 + y^2} \] Substituting the values of \( x \) and \( y \): \[ r = \sqrt{4^2 + (-2)^2} = \sqrt{16 + 4} = \sqrt{20} = 2\sqrt{5} \] Now we can find the six trigonometric functions: 1. **Sine**: \[ \sin \theta = \frac{y}{r} = \frac{-2}{2\sqrt{5}} = \frac{-1}{\sqrt{5}} = \frac{-\sqrt{5}}{5} \quad \text{(rationalizing the denominator)} \] 2. **Cosine**: \[ \cos \theta = \frac{x}{r} = \frac{4}{2\sqrt{5}} = \frac{2}{\sqrt{5}} = \frac{2\sqrt{5}}{5} \quad \text{(rationalizing the denominator)} \] 3. **Tangent**: \[ \tan \theta = \frac{y}{x} = \frac{-2}{4} = -\frac{1}{2} \] 4. **Cosecant** (the reciprocal of sine): \[ \csc \theta = \frac{1}{\sin \theta} = \frac{1}{\frac{-\sqrt{5}}{5}} = -\frac{5}{\sqrt{5}} = -\sqrt{5} \quad \text{(rationalizing the denominator)} \] 5. **Secant** (the reciprocal of cosine): \[ \sec \theta = \frac{1}{\cos \theta} = \frac{1}{\frac{2\sqrt{5}}{5}} = \frac{5}{2\sqrt{5}} = \frac{\sqrt{5}}{2} \quad \text{(rationalizing the denominator)} \] 6. **Cotangent** (the reciprocal of tangent): \[ \cot \theta = \frac{1}{\tan \theta} = \frac{1}{-\frac{1}{2}} = -2 \] Now we summarize the results: - \( \sin \theta = \frac{-\sqrt{5}}{5} \) - \( \cos \theta = \frac{2\sqrt{5}}{5} \) - \( \tan \theta = -\frac{1}{2} \) - \( \csc \theta = -\sqrt{5} \) - \( \sec \theta = \frac{\sqrt{5}}{2} \) - \( \cot \theta = -2 \) Thus, the exact value of \( \sin \theta \) is: \[ \sin \theta = \frac{-\sqrt{5}}{5} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To determine the six trigonometric functions of the angle \( \theta \) given the point \( (4, -2) \) on its terminal side, we start by calculating the radius \( r \). The radius can be found using the formula: \[ r = \sqrt{x^2 + y^2} \] Here, \( x = 4 \) and \( y = -2 \): \[ r = \sqrt{4^2 + (-2)^2} = \sqrt{16 + 4} = \sqrt{20} = 2\sqrt{5} \] Now we can find the values of the six trigonometric functions: 1. **Sine**: \[ \sin \theta = \frac{y}{r} = \frac{-2}{2\sqrt{5}} = \frac{-1}{\sqrt{5}} = \frac{-\sqrt{5}}{5} \quad \text{(rationalizing the denominator)} \] 2. **Cosine**: \[ \cos \theta = \frac{x}{r} = \frac{4}{2\sqrt{5}} = \frac{2}{\sqrt{5}} = \frac{2\sqrt{5}}{5} \quad \text{(rationalizing the denominator)} \] 3. **Tangent**: \[ \tan \theta = \frac{y}{x} = \frac{-2}{4} = -\frac{1}{2} \] 4. **Cosecant** (reciprocal of sine): \[ \csc \theta = \frac{1}{\sin \theta} = \frac{1}{\frac{-\sqrt{5}}{5}} = -\frac{5}{\sqrt{5}} = -\sqrt{5} \quad \text{(rationalizes to)} \] 5. **Secant** (reciprocal of cosine): \[ \sec \theta = \frac{1}{\cos \theta} = \frac{1}{\frac{2\sqrt{5}}{5}} = \frac{5}{2\sqrt{5}} = \frac{\sqrt{5}}{2} \quad \text{(rationalizes)} \] 6. **Cotangent** (reciprocal of tangent): \[ \cot \theta = \frac{1}{\tan \theta} = -2 \] Putting it all together, the exact values of the six trigonometric functions are: \[ \sin \theta = \frac{-\sqrt{5}}{5}, \quad \cos \theta = \frac{2\sqrt{5}}{5}, \quad \tan \theta = -\frac{1}{2}, \] \[ \csc \theta = -\sqrt{5}, \quad \sec \theta = \frac{\sqrt{5}}{2}, \quad \cot \theta = -2. \]

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad