Dilate \( \triangle A B C \) using point \( C \) as the center of dilation and a scale factor of 3 to form \( \triangle A^{\prime} B^{\prime} C^{\prime} \). Explain how you determined the coordinates of the dilated figure.
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
To dilate \( \triangle ABC \) using point \( C \) and a scale factor of 3, you need to multiply the distance from \( C \) to points \( A \) and \( B \) by 3. If \( C \) has coordinates \( (x_C, y_C) \), then the coordinates of the dilated points can be found using the formula: \[ A' = (1 - k)(x_C) + k(x_A), \quad B' = (1 - k)(x_C) + k(x_B) \] where \( k \) is the scale factor (in this case, 3) and \( (x_A, y_A) \) are the original coordinates of points \( A \) and \( B \). Essentially, you can visualize this as moving both points \( A \) and \( B \) away from point \( C \) by a factor of 3. For instance, if point \( A \) is at \( (2, 3) \) and \( C \) is at \( (1, 1) \), you can apply the formula for \( A' \): \[ A' = (1 - 3)(1) + 3(2) = -2 + 6 = 4 \text{ for the x-coordinate} \] \[ A' = (1 - 3)(1) + 3(3) = -2 + 9 = 7 \text{ for the y-coordinate} \] Thus, \( A' \) becomes \( (4, 7) \). Repeat this for point \( B \) to get \( B' \), resulting in the dilated \( \triangle A' B' C' \).
