Pregunta
\[ \text{Find } 2011^2 - 2010^2 \text{?} \]
Ask by Greene Hodgson. in Nigeria
Feb 21,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The answer is 4021.
Solución
To solve 2011² - 2010², notice that this is a difference of two squares which can be factored as (a + b)(a - b) where a = 2011 and b = 2010.
Thus:
2011² - 2010² = (2011 + 2010) × (2011 - 2010).
Calculate each part:
2011 + 2010 = 4021
2011 - 2010 = 1
So, the expression becomes:
4021 × 1 = 4021
Therefore, the answer is 4021.
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Extra Insights
To solve \(2011^2 - 2010^2\), we can use the difference of squares formula, which states that \(a^2 - b^2 = (a - b)(a + b)\). Here, let \(a = 2011\) and \(b = 2010\). So we have: \[ 2011^2 - 2010^2 = (2011 - 2010)(2011 + 2010) = (1)(4021) = 4021. \] Thus, \(2011^2 - 2010^2 = 4021\).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium