The stopping distance for a car traveling 25 mph is 69.2 feet, and for a car traveling 40 mph it is 112 feet. The stopping distance in feet can be described by the equation \( \mathrm{y}=\mathrm{ax} 2+\mathrm{bx} \), where \( x \) is the speed in mph. (a) Find the values of a and b . (b) Use the answers from part (a) to find the stopping distance for a car traveling 60 mph . \( \left[\begin{array}{ll|l}625 & 25 & 69.2 \\ 1600 & 40 & 112\end{array}\right] \) (Type whole numbers.) The value of a is \( \square \). The value of b is \( \square \). (TvDe inteaers or decimals rounded to six decimal places as needed.)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Beyond the Answer
To find the values of \( a \) and \( b \) in the equation \( y = ax^2 + bx \), we can set up a system of equations based on the stopping distances given for 25 mph and 40 mph. We have: 1. For \( x = 25 \): \( 69.2 = a(25^2) + b(25) \) → \( 69.2 = 625a + 25b \) 2. For \( x = 40 \): \( 112 = a(40^2) + b(40) \) → \( 112 = 1600a + 40b \) This gives us the system of equations: 1. \( 625a + 25b = 69.2 \) (Equation 1) 2. \( 1600a + 40b = 112 \) (Equation 2) We can simplify the equations to make calculations easier. Dividing Equation 1 by 25, we get: \( 25a + b = 2.768 \) (Equation 1 simplified) Next, dividing Equation 2 by 40, we have: \( 40a + b = 2.8 \) (Equation 2 simplified) Now, we can solve this system: 1. From Equation 1 simplified, \( b = 2.768 - 25a \). 2. Substituting \( b \) into Equation 2 simplified: \( 40a + (2.768 - 25a) = 2.8 \) This simplifies to \( 15a + 2.768 = 2.8 \) or \( 15a = 0.032 \). Therefore, \( a = \frac{0.032}{15} = 0.0021333 \). Now substituting \( a \) back into Equation 1 simplified: \( 25(0.0021333) + b = 2.768 \), giving \( b = 2.768 - 0.053333 = 2.7146667 \) or approximately \( 2.714667 \). Now, we have: The value of \( a \) is approximately \( 0.002133 \) (if rounded to six decimal places). The value of \( b \) is approximately \( 2.714667 \) (if rounded to six decimal places). (b) To find the stopping distance for a car traveling 60 mph, we plug \( x = 60 \) into our equation: \( y = 0.002133(60^2) + 2.714667(60) \). Calculating: \( y = 0.002133(3600) + 2.714667(60) \), \( y = 7.6768 + 162.88002 = 170.55682 \). So the stopping distance for a car traveling 60 mph is approximately \( 170.56 \) feet.
