Responder
There are no solutions to the system of equations.
Solución
Solve the equation by following steps:
- step0: Solve for \(y\):
\(102^{x}-2^{y+2}=0\)
- step1: Move the expression to the right side:
\(-2^{y+2}=0-102^{x}\)
- step2: Remove 0:
\(-2^{y+2}=-102^{x}\)
- step3: Change the signs:
\(2^{y+2}=102^{x}\)
- step4: Take the logarithm of both sides:
\(\log_{2}{\left(2^{y+2}\right)}=\log_{2}{\left(102^{x}\right)}\)
- step5: Evaluate the logarithm:
\(y+2=\log_{2}{\left(102^{x}\right)}\)
- step6: Simplify:
\(y+2=x\log_{2}{\left(102\right)}\)
- step7: Move the constant to the right side:
\(y=x\log_{2}{\left(102\right)}-2\)
- step8: Simplify:
\(y=x+x\log_{2}{\left(51\right)}-2\)
Solve the equation \( x^{2} + 2xy + y^{2} = 36 \).
Solve the equation by following steps:
- step0: Solve for \(y\):
\(x^{2}+2xy+y^{2}=36\)
- step1: Move the expression to the left side:
\(x^{2}+2xy+y^{2}-36=0\)
- step2: Simplify:
\(x^{2}-36+2xy+y^{2}=0\)
- step3: Factor the expression:
\(\left(x+6+y\right)\left(x-6+y\right)=0\)
- step4: Separate into possible cases:
\(\begin{align}&x+6+y=0\\&x-6+y=0\end{align}\)
- step5: Solve the equation:
\(\begin{align}&y=-x-6\\&y=-x+6\end{align}\)
Solve the system of equations \( y=x+x\log_{2}{(51)}-2; y=-x-6; y=-x+6 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}y=x+x\log_{2}{\left(51\right)}-2\\y=-x-6\\y=-x+6\end{array}\right.\)
- step1: Calculate:
\(\left\{ \begin{array}{l}y=x+\log_{2}{\left(51\right)}\times x-2\\y=-x-6\\y=-x+6\end{array}\right.\)
- step2: Substitute the value of \(y:\)
\(\left\{ \begin{array}{l}x+\log_{2}{\left(51\right)}\times x-2=-x-6\\x+\log_{2}{\left(51\right)}\times x-2=-x+6\end{array}\right.\)
- step3: Solve the equation:
\(\left\{ \begin{array}{l}x=-\frac{4}{2+\log_{2}{\left(51\right)}}\\x+\log_{2}{\left(51\right)}\times x-2=-x+6\end{array}\right.\)
- step4: Substitute the value of \(x:\)
\(-\frac{4}{2+\log_{2}{\left(51\right)}}+\log_{2}{\left(51\right)}\times \left(-\frac{4}{2+\log_{2}{\left(51\right)}}\right)-2=-\left(-\frac{4}{2+\log_{2}{\left(51\right)}}\right)+6\)
- step5: Simplify:
\(-\frac{8+8\log_{204}{\left(51\right)}+4\log_{2}{\left(51\right)}\times \log_{204}{\left(51\right)}+2\log_{2}{\left(51\right)}}{2+\log_{2}{\left(51\right)}}=\log_{204}{\left(65536\times 51^{6}\right)}\)
- step6: Calculate:
\(\left\{ \begin{array}{l}x \in \varnothing \\y \in \varnothing \end{array}\right.\)
- step7: Rewrite:
\((x, y) \in \varnothing\)
Let's solve the system of equations step by step.
We have the following equations:
1. \( 102^{x} - 2^{y + 2} = 0 \)
2. \( x^{2} + 2xy + y^{2} = 36 \)
### Step 1: Solve the first equation for \( y \)
From the first equation, we can express \( y \) in terms of \( x \):
\[
102^{x} = 2^{y + 2}
\]
Taking logarithm base 2 on both sides:
\[
\log_{2}(102^{x}) = y + 2
\]
This simplifies to:
\[
x \log_{2}(102) = y + 2
\]
Thus, we can express \( y \) as:
\[
y = x \log_{2}(102) - 2
\]
### Step 2: Substitute \( y \) into the second equation
Now, we substitute \( y \) into the second equation:
\[
x^{2} + 2x(x \log_{2}(102) - 2) + (x \log_{2}(102) - 2)^{2} = 36
\]
### Step 3: Solve the second equation
After substituting, we can simplify and solve for \( x \). However, I have already computed the results for \( y \) in terms of \( x \) and found two forms for \( y \):
1. \( y = -x - 6 \)
2. \( y = -x + 6 \)
### Step 4: Solve the system of equations
Now, we need to check if there are any solutions between the two forms of \( y \):
1. \( y = x + x \log_{2}(51) - 2 \)
2. \( y = -x - 6 \)
3. \( y = -x + 6 \)
After checking these equations, we find that there are no solutions that satisfy both equations simultaneously.
### Conclusion
The final result is that there are no solutions to the system of equations:
\[
(x, y) \in \varnothing
\]
Thus, the system has no solution.
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución