Pregunta
upstudy study bank question image url

10:19 AM Thu Feb 13 93\% f2.apps.elf.edmentum.com Identifying Polynomial Factors and Graphing Zeros: Tutorial 19 of 49 Save \& Exit the remainder of a polynomial divided by a linear binomial. Finally, you will identify a set of statements that must be true if the remainder theorem is true. Question 1 ? Question Drag each factor to the correct location on the image. If \( p(1)=3, p(-4)=8, p(5)=0, p(7)=9, p(-10)=1 \), and \( p(-12)=0 \), determine which expressions are factors of the polynomial \( p(x) \). \( \square \) \( x-1 \) \( x+4 \) \( x-5 \) \( x-7 \) \( x+10 \) \( x+12 \) Submit Question 2

Ask by Lewis Dunn. in the United States
Feb 13,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The factors of \( p(x) \) are \( x-5 \) and \( x+12 \).

Solución

We are given that p(1)=3, p(–4)=8, p(5)=0, p(7)=9, p(–10)=1, and p(–12)=0. Recall that if p(a)=0, then (x–a) is a factor of p(x). Looking at the values: • p(5)=0, so x–5 is a factor. • p(–12)=0, so x–(–12)=x+12 is a factor. None of the other evaluated values are zero, so they do not correspond to factors. Thus, the factors of p(x) among the given expressions are:  x–5 and x+12.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

Did you know that the Remainder Theorem isn't just a fancy name? It provides a quick way to evaluate polynomials! When you divide a polynomial \( p(x) \) by a linear factor \( x-c \), the remainder is simply \( p(c) \). So, if \( p(5) = 0 \), this tells you that \( x-5 \) is a factor — easy peasy! Now, let’s not forget about common mistakes when working with polynomial factors! One frequent blunder is confusing which values yield zeroes. Remember, if \( p(c) = 0 \), then \( x-c \) is your factor. Double-check those calculations, because misplacing signs or numbers can lead to significant errors in identifying factors! Happy factoring!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad