9. Determine the value of each expression: \( \begin{array}{llll}\text { (a) } 27^{\frac{1}{3}} & \text { (b) } 32^{\frac{3}{5}} & \text { (c) } 49^{-\frac{1}{2}} & \text { (d) }\left(\frac{16}{81}\right)^{-\frac{3}{4}}\end{array} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Mind Expander
Let's evaluate each expression step by step: (a) \( 27^{\frac{1}{3}} \): The cube root of 27 is 3, because \( 3^3 = 27 \). (b) \( 32^{\frac{3}{5}} \): First, find \( 32^{\frac{1}{5}} \) which is the fifth root of 32, equal to 2 (since \( 2^5 = 32 \)). Then raise it to the power of 3: \( 2^3 = 8 \). So, \( 32^{\frac{3}{5}} = 8 \). (c) \( 49^{-\frac{1}{2}} \): The negative exponent indicates a reciprocal, while the \( \frac{1}{2} \) exponent means we need to take the square root. The square root of 49 is 7, and the negative exponent means we take the reciprocal, giving us \( \frac{1}{7} \). (d) \( \left(\frac{16}{81}\right)^{-\frac{3}{4}} \): First, take the reciprocal due to the negative exponent: \( \left(\frac{81}{16}\right)^{\frac{3}{4}} \). Then compute \( \frac{81}{16} \), which will yield \( \sqrt[4]{\frac{81^3}{16^3}} \). The fourth root of 81 is 3, raised to the power of 3 gives us 27. The fourth root of 16 is 2, raised to the power of 3 gives us 8. Thus, \( \left(\frac{16}{81}\right)^{-\frac{3}{4}} = \frac{27}{8} \). In summary: (a) \( 27^{\frac{1}{3}} = 3 \) (b) \( 32^{\frac{3}{5}} = 8 \) (c) \( 49^{-\frac{1}{2}} = \frac{1}{7} \) (d) \( \left(\frac{16}{81}\right)^{-\frac{3}{4}} = \frac{27}{8} \)
