Pregunta
upstudy study bank question image url

9. Determine the value of each expression: \( \begin{array}{llll}\text { (a) } 27^{\frac{1}{3}} & \text { (b) } 32^{\frac{3}{5}} & \text { (c) } 49^{-\frac{1}{2}} & \text { (d) }\left(\frac{16}{81}\right)^{-\frac{3}{4}}\end{array} \)

Ask by Dawson Johnston. in Curaçao
Jan 10,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The answers are: - (a) 3 - (b) 8 - (c) 1/7 - (d) 27/8

Solución

Let's evaluate each expression step by step: ### (a) \( 27^{\frac{1}{3}} \) This represents the cube root of 27. - **Calculation:** \[ 27 = 3^3 \implies 27^{\frac{1}{3}} = (3^3)^{\frac{1}{3}} = 3^{3 \times \frac{1}{3}} = 3^1 = 3 \] - **Answer:** \( 3 \) --- ### (b) \( 32^{\frac{3}{5}} \) This can be interpreted as the 5th root of 32 raised to the 3rd power. - **Express 32 as a power of 2:** \[ 32 = 2^5 \] - **Calculation:** \[ 32^{\frac{3}{5}} = (2^5)^{\frac{3}{5}} = 2^{5 \times \frac{3}{5}} = 2^3 = 8 \] - **Answer:** \( 8 \) --- ### (c) \( 49^{-\frac{1}{2}} \) A negative exponent indicates a reciprocal, and the exponent \(\frac{1}{2}\) represents a square root. - **Express 49 as a power of 7:** \[ 49 = 7^2 \] - **Calculation:** \[ 49^{-\frac{1}{2}} = (7^2)^{-\frac{1}{2}} = 7^{2 \times -\frac{1}{2}} = 7^{-1} = \frac{1}{7} \] - **Answer:** \( \frac{1}{7} \) --- ### (d) \( \left(\frac{16}{81}\right)^{-\frac{3}{4}} \) A negative exponent indicates taking the reciprocal, and the exponent \(\frac{3}{4}\) involves roots and powers. - **Express 16 and 81 as powers:** \[ 16 = 2^4 \quad \text{and} \quad 81 = 3^4 \] - **Rewrite the expression:** \[ \left(\frac{16}{81}\right)^{-\frac{3}{4}} = \left(\frac{2^4}{3^4}\right)^{-\frac{3}{4}} = \left(\frac{2}{3}\right)^{4 \times -\frac{3}{4}} = \left(\frac{2}{3}\right)^{-3} = \left(\frac{3}{2}\right)^3 = \frac{27}{8} \] - **Answer:** \( \frac{27}{8} \) --- ### **Summary of Answers:** - **(a)** \( 3 \) - **(b)** \( 8 \) - **(c)** \( \frac{1}{7} \) - **(d)** \( \frac{27}{8} \)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

Let's evaluate each expression step by step: (a) \( 27^{\frac{1}{3}} \): The cube root of 27 is 3, because \( 3^3 = 27 \). (b) \( 32^{\frac{3}{5}} \): First, find \( 32^{\frac{1}{5}} \) which is the fifth root of 32, equal to 2 (since \( 2^5 = 32 \)). Then raise it to the power of 3: \( 2^3 = 8 \). So, \( 32^{\frac{3}{5}} = 8 \). (c) \( 49^{-\frac{1}{2}} \): The negative exponent indicates a reciprocal, while the \( \frac{1}{2} \) exponent means we need to take the square root. The square root of 49 is 7, and the negative exponent means we take the reciprocal, giving us \( \frac{1}{7} \). (d) \( \left(\frac{16}{81}\right)^{-\frac{3}{4}} \): First, take the reciprocal due to the negative exponent: \( \left(\frac{81}{16}\right)^{\frac{3}{4}} \). Then compute \( \frac{81}{16} \), which will yield \( \sqrt[4]{\frac{81^3}{16^3}} \). The fourth root of 81 is 3, raised to the power of 3 gives us 27. The fourth root of 16 is 2, raised to the power of 3 gives us 8. Thus, \( \left(\frac{16}{81}\right)^{-\frac{3}{4}} = \frac{27}{8} \). In summary: (a) \( 27^{\frac{1}{3}} = 3 \) (b) \( 32^{\frac{3}{5}} = 8 \) (c) \( 49^{-\frac{1}{2}} = \frac{1}{7} \) (d) \( \left(\frac{16}{81}\right)^{-\frac{3}{4}} = \frac{27}{8} \)

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad