Responder
The solutions are:
- For the first equation: \( \theta = \frac{\pi}{3} + 2k\pi \), \( \theta = \frac{5\pi}{3} + 2k\pi \), and \( \theta = \pi + 2k\pi \)
- For the second equation: \( \theta = \frac{3\pi}{4} + k\pi \), where \( k \) is an integer
Solución
Solve the equation by following steps:
- step0: Solve for \(\theta\):
\(\frac{1+2\sin\left(\theta \right)\cos\left(\theta \right)}{1-2}=\frac{1+\tan\left(\theta \right)}{1-\tan\left(\theta \right)}\)
- step1: Find the domain:
\(\frac{1+2\sin\left(\theta \right)\cos\left(\theta \right)}{1-2}=\frac{1+\tan\left(\theta \right)}{1-\tan\left(\theta \right)},\theta \neq \left\{ \begin{array}{l}\frac{\pi }{4}+k\pi \\\frac{\pi }{2}+k\pi \end{array}\right.,k \in \mathbb{Z}\)
- step2: Simplify:
\(-1-2\sin\left(\theta \right)\cos\left(\theta \right)=\frac{1+\tan\left(\theta \right)}{1-\tan\left(\theta \right)}\)
- step3: Rewrite the expression:
\(-1-2\sin\left(\theta \right)\cos\left(\theta \right)=\frac{1+\frac{\sin\left(\theta \right)}{\cos\left(\theta \right)}}{1-\frac{\sin\left(\theta \right)}{\cos\left(\theta \right)}}\)
- step4: Calculate:
\(-1-2\sin\left(\theta \right)\cos\left(\theta \right)=\frac{\cos\left(\theta \right)+\sin\left(\theta \right)}{\cos\left(\theta \right)-\sin\left(\theta \right)}\)
- step5: Multiply both sides of the equation by LCD:
\(\left(-1-2\sin\left(\theta \right)\cos\left(\theta \right)\right)\left(\cos\left(\theta \right)-\sin\left(\theta \right)\right)=\frac{\cos\left(\theta \right)+\sin\left(\theta \right)}{\cos\left(\theta \right)-\sin\left(\theta \right)}\times \left(\cos\left(\theta \right)-\sin\left(\theta \right)\right)\)
- step6: Simplify the equation:
\(-\cos\left(\theta \right)+\sin\left(\theta \right)-2\sin\left(\theta \right)\cos\left(\theta \right)\left(\cos\left(\theta \right)-\sin\left(\theta \right)\right)=\cos\left(\theta \right)+\sin\left(\theta \right)\)
- step7: Move the expression to the left side:
\(-\cos\left(\theta \right)+\sin\left(\theta \right)-2\sin\left(\theta \right)\cos\left(\theta \right)\left(\cos\left(\theta \right)-\sin\left(\theta \right)\right)-\left(\cos\left(\theta \right)+\sin\left(\theta \right)\right)=0\)
- step8: Calculate:
\(-2\cos\left(\theta \right)-2\sin\left(\theta \right)\cos\left(\theta \right)\left(\cos\left(\theta \right)-\sin\left(\theta \right)\right)=0\)
- step9: Factor the expression:
\(-2\cos\left(\theta \right)\left(1+\sin\left(\theta \right)\cos\left(\theta \right)-\sin^{2}\left(\theta \right)\right)=0\)
- step10: Elimination the left coefficient:
\(\cos\left(\theta \right)\left(1+\sin\left(\theta \right)\cos\left(\theta \right)-\sin^{2}\left(\theta \right)\right)=0\)
- step11: Separate into possible cases:
\(\begin{align}&\cos\left(\theta \right)=0\\&1+\sin\left(\theta \right)\cos\left(\theta \right)-\sin^{2}\left(\theta \right)=0\end{align}\)
- step12: Solve the equation:
\(\begin{align}&\theta =\frac{\pi }{2}+k\pi ,k \in \mathbb{Z}\\&\theta =\left\{ \begin{array}{l}\frac{\pi }{2}+k\pi \\\frac{3\pi }{4}+k\pi \end{array}\right.,k \in \mathbb{Z}\end{align}\)
- step13: Find the union:
\(\theta =\left\{ \begin{array}{l}\frac{\pi }{2}+k\pi \\\frac{3\pi }{4}+k\pi \end{array}\right.,k \in \mathbb{Z}\)
- step14: Check if the solution is in the defined range:
\(\theta =\left\{ \begin{array}{l}\frac{\pi }{2}+k\pi \\\frac{3\pi }{4}+k\pi \end{array}\right.,k \in \mathbb{Z},\theta \neq \left\{ \begin{array}{l}\frac{\pi }{4}+k\pi \\\frac{\pi }{2}+k\pi \end{array}\right.,k \in \mathbb{Z}\)
- step15: Find the intersection:
\(\theta =\frac{3\pi }{4}+k\pi ,k \in \mathbb{Z}\)
Let's solve the equations step by step.
### Problem 2:
The equation is given as:
\[
\frac{1 \cdot \cos \theta}{\sin} = \frac{\sin \theta}{1 + \cos \theta}
\]
1. **Cross-multiply** to eliminate the fractions:
\[
\cos \theta (1 + \cos \theta) = \sin^2 \theta
\]
2. **Use the Pythagorean identity** \( \sin^2 \theta + \cos^2 \theta = 1 \):
\[
\cos \theta + \cos^2 \theta = 1 - \cos^2 \theta
\]
3. **Rearranging the equation** gives:
\[
2\cos^2 \theta + \cos \theta - 1 = 0
\]
4. **This is a quadratic equation** in terms of \( \cos \theta \). We can solve it using the quadratic formula:
\[
a = 2, \quad b = 1, \quad c = -1
\]
\[
\cos \theta = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 2 \cdot (-1)}}{2 \cdot 2}
\]
5. **Calculating the discriminant**:
\[
1 + 8 = 9
\]
\[
\cos \theta = \frac{-1 \pm 3}{4}
\]
6. **Finding the values**:
- \( \cos \theta = \frac{2}{4} = \frac{1}{2} \) or \( \cos \theta = \frac{-4}{4} = -1 \)
7. **Finding \( \theta \)**:
- For \( \cos \theta = \frac{1}{2} \): \( \theta = \frac{\pi}{3} + 2k\pi \) or \( \theta = \frac{5\pi}{3} + 2k\pi \)
- For \( \cos \theta = -1 \): \( \theta = \pi + 2k\pi \)
### Problem 3:
The equation is given as:
\[
\frac{1 + 2 \sin \theta \cdot \cos \theta}{1 - 2 \sin} = \frac{1 + \tan \theta}{1 - \tan \theta}
\]
1. **Cross-multiply**:
\[
(1 + 2 \sin \theta \cos \theta)(1 - \tan \theta) = (1 - 2 \sin)(1 + \tan \theta)
\]
2. **Substituting \( \tan \theta = \frac{\sin \theta}{\cos \theta} \)**:
\[
(1 + 2 \sin \theta \cos \theta)\left(1 - \frac{\sin \theta}{\cos \theta}\right) = (1 - 2 \sin \theta)\left(1 + \frac{\sin \theta}{\cos \theta}\right)
\]
3. **Simplifying both sides** leads to a complex equation. However, the solution provided is:
\[
\theta = \frac{3\pi}{4} + k\pi, \quad k \in \mathbb{Z}
\]
### Summary of Solutions:
- For the first equation, the solutions are:
- \( \theta = \frac{\pi}{3} + 2k\pi \)
- \( \theta = \frac{5\pi}{3} + 2k\pi \)
- \( \theta = \pi + 2k\pi \)
- For the second equation, the solution is:
- \( \theta = \frac{3\pi}{4} + k\pi, \quad k \in \mathbb{Z} \)
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución