Pregunta
upstudy study bank question image url

2) \( \frac{1 \cdot \cos \theta}{\sin }=\frac{\sin \theta}{1+\cos \theta} \) 3) \( \frac{1+2 \sin \theta \cdot \cos \theta}{1-2 \sin }=\frac{1+\tan \theta}{1-\tan \theta} \)

Ask by Mitchell Cruz. in South Africa
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The solutions are: - For the first equation: \( \theta = \frac{\pi}{3} + 2k\pi \), \( \theta = \frac{5\pi}{3} + 2k\pi \), and \( \theta = \pi + 2k\pi \) - For the second equation: \( \theta = \frac{3\pi}{4} + k\pi \), where \( k \) is an integer

Solución

Solve the equation by following steps: - step0: Solve for \(\theta\): \(\frac{1+2\sin\left(\theta \right)\cos\left(\theta \right)}{1-2}=\frac{1+\tan\left(\theta \right)}{1-\tan\left(\theta \right)}\) - step1: Find the domain: \(\frac{1+2\sin\left(\theta \right)\cos\left(\theta \right)}{1-2}=\frac{1+\tan\left(\theta \right)}{1-\tan\left(\theta \right)},\theta \neq \left\{ \begin{array}{l}\frac{\pi }{4}+k\pi \\\frac{\pi }{2}+k\pi \end{array}\right.,k \in \mathbb{Z}\) - step2: Simplify: \(-1-2\sin\left(\theta \right)\cos\left(\theta \right)=\frac{1+\tan\left(\theta \right)}{1-\tan\left(\theta \right)}\) - step3: Rewrite the expression: \(-1-2\sin\left(\theta \right)\cos\left(\theta \right)=\frac{1+\frac{\sin\left(\theta \right)}{\cos\left(\theta \right)}}{1-\frac{\sin\left(\theta \right)}{\cos\left(\theta \right)}}\) - step4: Calculate: \(-1-2\sin\left(\theta \right)\cos\left(\theta \right)=\frac{\cos\left(\theta \right)+\sin\left(\theta \right)}{\cos\left(\theta \right)-\sin\left(\theta \right)}\) - step5: Multiply both sides of the equation by LCD: \(\left(-1-2\sin\left(\theta \right)\cos\left(\theta \right)\right)\left(\cos\left(\theta \right)-\sin\left(\theta \right)\right)=\frac{\cos\left(\theta \right)+\sin\left(\theta \right)}{\cos\left(\theta \right)-\sin\left(\theta \right)}\times \left(\cos\left(\theta \right)-\sin\left(\theta \right)\right)\) - step6: Simplify the equation: \(-\cos\left(\theta \right)+\sin\left(\theta \right)-2\sin\left(\theta \right)\cos\left(\theta \right)\left(\cos\left(\theta \right)-\sin\left(\theta \right)\right)=\cos\left(\theta \right)+\sin\left(\theta \right)\) - step7: Move the expression to the left side: \(-\cos\left(\theta \right)+\sin\left(\theta \right)-2\sin\left(\theta \right)\cos\left(\theta \right)\left(\cos\left(\theta \right)-\sin\left(\theta \right)\right)-\left(\cos\left(\theta \right)+\sin\left(\theta \right)\right)=0\) - step8: Calculate: \(-2\cos\left(\theta \right)-2\sin\left(\theta \right)\cos\left(\theta \right)\left(\cos\left(\theta \right)-\sin\left(\theta \right)\right)=0\) - step9: Factor the expression: \(-2\cos\left(\theta \right)\left(1+\sin\left(\theta \right)\cos\left(\theta \right)-\sin^{2}\left(\theta \right)\right)=0\) - step10: Elimination the left coefficient: \(\cos\left(\theta \right)\left(1+\sin\left(\theta \right)\cos\left(\theta \right)-\sin^{2}\left(\theta \right)\right)=0\) - step11: Separate into possible cases: \(\begin{align}&\cos\left(\theta \right)=0\\&1+\sin\left(\theta \right)\cos\left(\theta \right)-\sin^{2}\left(\theta \right)=0\end{align}\) - step12: Solve the equation: \(\begin{align}&\theta =\frac{\pi }{2}+k\pi ,k \in \mathbb{Z}\\&\theta =\left\{ \begin{array}{l}\frac{\pi }{2}+k\pi \\\frac{3\pi }{4}+k\pi \end{array}\right.,k \in \mathbb{Z}\end{align}\) - step13: Find the union: \(\theta =\left\{ \begin{array}{l}\frac{\pi }{2}+k\pi \\\frac{3\pi }{4}+k\pi \end{array}\right.,k \in \mathbb{Z}\) - step14: Check if the solution is in the defined range: \(\theta =\left\{ \begin{array}{l}\frac{\pi }{2}+k\pi \\\frac{3\pi }{4}+k\pi \end{array}\right.,k \in \mathbb{Z},\theta \neq \left\{ \begin{array}{l}\frac{\pi }{4}+k\pi \\\frac{\pi }{2}+k\pi \end{array}\right.,k \in \mathbb{Z}\) - step15: Find the intersection: \(\theta =\frac{3\pi }{4}+k\pi ,k \in \mathbb{Z}\) Let's solve the equations step by step. ### Problem 2: The equation is given as: \[ \frac{1 \cdot \cos \theta}{\sin} = \frac{\sin \theta}{1 + \cos \theta} \] 1. **Cross-multiply** to eliminate the fractions: \[ \cos \theta (1 + \cos \theta) = \sin^2 \theta \] 2. **Use the Pythagorean identity** \( \sin^2 \theta + \cos^2 \theta = 1 \): \[ \cos \theta + \cos^2 \theta = 1 - \cos^2 \theta \] 3. **Rearranging the equation** gives: \[ 2\cos^2 \theta + \cos \theta - 1 = 0 \] 4. **This is a quadratic equation** in terms of \( \cos \theta \). We can solve it using the quadratic formula: \[ a = 2, \quad b = 1, \quad c = -1 \] \[ \cos \theta = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 2 \cdot (-1)}}{2 \cdot 2} \] 5. **Calculating the discriminant**: \[ 1 + 8 = 9 \] \[ \cos \theta = \frac{-1 \pm 3}{4} \] 6. **Finding the values**: - \( \cos \theta = \frac{2}{4} = \frac{1}{2} \) or \( \cos \theta = \frac{-4}{4} = -1 \) 7. **Finding \( \theta \)**: - For \( \cos \theta = \frac{1}{2} \): \( \theta = \frac{\pi}{3} + 2k\pi \) or \( \theta = \frac{5\pi}{3} + 2k\pi \) - For \( \cos \theta = -1 \): \( \theta = \pi + 2k\pi \) ### Problem 3: The equation is given as: \[ \frac{1 + 2 \sin \theta \cdot \cos \theta}{1 - 2 \sin} = \frac{1 + \tan \theta}{1 - \tan \theta} \] 1. **Cross-multiply**: \[ (1 + 2 \sin \theta \cos \theta)(1 - \tan \theta) = (1 - 2 \sin)(1 + \tan \theta) \] 2. **Substituting \( \tan \theta = \frac{\sin \theta}{\cos \theta} \)**: \[ (1 + 2 \sin \theta \cos \theta)\left(1 - \frac{\sin \theta}{\cos \theta}\right) = (1 - 2 \sin \theta)\left(1 + \frac{\sin \theta}{\cos \theta}\right) \] 3. **Simplifying both sides** leads to a complex equation. However, the solution provided is: \[ \theta = \frac{3\pi}{4} + k\pi, \quad k \in \mathbb{Z} \] ### Summary of Solutions: - For the first equation, the solutions are: - \( \theta = \frac{\pi}{3} + 2k\pi \) - \( \theta = \frac{5\pi}{3} + 2k\pi \) - \( \theta = \pi + 2k\pi \) - For the second equation, the solution is: - \( \theta = \frac{3\pi}{4} + k\pi, \quad k \in \mathbb{Z} \)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

Did you know that trigonometric equations like these have been studied for thousands of years? The ancient Greeks, particularly Hipparchus and Ptolemy, developed extensive trigonometric tables to help with astronomy. They didn’t have calculators—just a passion for understanding the universe! Today, we use these same principles in areas like engineering and physics, making it fascinating to see how their work laid the groundwork for our modern applications. When solving these equations, one common mistake is overlooking the domain restrictions caused by the sine and cosine functions. For instance, if you have a term involving division by sine, ensure \( \sin \theta \neq 0 \) to avoid undefined expressions. This can save you a lot of time and frustration, helping you arrive at the correct solutions without any hiccups!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad