1) An isosceles triangle has an angle that measures \( 100^{\circ} \). What measures are possible for the other two angles? Choose all that apply.
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
In an isosceles triangle, two angles are equal. Given that one angle measures \( 100^{\circ} \), the two equal angles must then be the remaining angles. Since the sum of all angles in a triangle is \( 180^{\circ} \), you can find the measure of the two equal angles by subtracting \( 100^{\circ} \) from \( 180^{\circ} \). This gives \( 180^{\circ} - 100^{\circ} = 80^{\circ} \), meaning the two equal angles each measure \( 80^{\circ} \). So, the angles you can have in this isosceles triangle are \( 80^{\circ} \), \( 80^{\circ} \), and \( 100^{\circ} \). The possible angle measures for the other two angles are \( 80^{\circ} \) each.
