Pregunta
upstudy study bank question image url

Part 1 of 2 Sther than a no solution set, use interval notation to express the solution set and then graph the solution set on a number \[ \frac{x-16}{6} \geq \frac{x-8}{9}+\frac{7}{18} \] Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. The solution set in interval notation is (Type your answer using interval notation.)

Ask by Peters Turnbull. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The solution set is [39, ∞).

Solución

We begin with the inequality   (x – 16)/6 ≥ (x – 8)/9 + 7/18 Step 1. Multiply every term by 18 (the least common denominator) to eliminate the fractions:   18 · ((x – 16)/6) ≥ 18 · ((x – 8)/9) + 18 · (7/18) This simplifies to:   3(x – 16) ≥ 2(x – 8) + 7 Step 2. Expand both sides:   3x – 48 ≥ 2x – 16 + 7 Combine the constants on the right:   3x – 48 ≥ 2x – 9 Step 3. Subtract 2x from both sides of the inequality:   x – 48 ≥ –9 Step 4. Add 48 to both sides to solve for x:   x ≥ 39 Thus, the solution set in interval notation is [39, ∞). Graphing the solution on a number line: • Draw a horizontal line. • Place a closed circle (or a bracket) at 39 to indicate that 39 is included. • Shade or draw an arrow to the right of 39 to show that all numbers greater than 39 are included. So the correct choice is: A. The solution set in interval notation is [39, ∞).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve the inequality \(\frac{x-16}{6} \geq \frac{x-8}{9}+\frac{7}{18}\), we first find a common denominator for all terms. The least common multiple of 6, 9, and 18 is 18. Rewriting the inequality with that in mind gives: \[ \frac{3(x-16)}{18} \geq \frac{2(x-8)}{18} + \frac{7}{18} \] Now, multiply everything by 18 to eliminate the denominators (remember that multiplying by a positive number keeps the direction of the inequality the same): \[ 3(x-16) \geq 2(x-8) + 7 \] Distributing gives: \[ 3x - 48 \geq 2x - 16 + 7 \] Combining the right-hand side, we get: \[ 3x - 48 \geq 2x - 9 \] Subtracting \(2x\) from both sides, we find: \[ x - 48 \geq -9 \] Adding 48 to both sides leads us to: \[ x \geq 39 \] Thus, the solution set in interval notation is \([39, \infty)\). Now, to graph this solution, you would draw a number line, mark a solid dot above 39 (indicating that 39 is included), and shade everything to the right to represent all numbers greater than or equal to 39.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad