Pregunta
upstudy study bank question image url

How can the faces of two cubes be numbered so that when they are rolled, the resulting sum is a number 1 to 12 inclusive and each sum has the same probability? Choose the correct answer below. A. Number them so that one cube has the numbers \( 0,0,0,2,2,2 \), and the other cube has the numbers \( 1,3,5 \), \( 6,8,10 \). B. Number them so that one cube has the numbers \( 0,0,0,3,3,3 \), and the other cube has the numbers \( 1,2,3 \), \( 7,8,9 \). C. Number them so that one cube has the numbers \( 0,1,2,3,4,5 \) and the other cube has the numbers \( 1,2,3 \), \( 4,5,6 \). D. Number them so that each cupe has the numbers \( 1,2,3,4,5,6 \).

Ask by Higgins Pena. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The correct answer is B: Number one cube with {0, 0, 0, 3, 3, 3} and the other with {1, 2, 3, 7, 8, 9}.

Solución

We want to assign numbers to the faces of two cubes such that, when rolled together, there are 36 equally-likely outcomes and the resulting sums cover exactly the numbers 1 through 12 with each sum having 3 outcomes (i.e. probability 3⁄36 = 1⁄12). Let’s examine option B: • Cube 1: {0, 0, 0, 3, 3, 3} • Cube 2: {1, 2, 3, 7, 8, 9} When these cubes are rolled: 1. If Cube 1 shows 0, then the sum is determined solely by Cube 2. The possible sums are:   0 + 1 = 1   0 + 2 = 2   0 + 3 = 3   0 + 7 = 7   0 + 8 = 8   0 + 9 = 9 Each of these sums comes from 3 outcomes (since Cube 1 has three faces showing 0). 2. If Cube 1 shows 3, then the sums are:   3 + 1 = 4   3 + 2 = 5   3 + 3 = 6   3 + 7 = 10   3 + 8 = 11   3 + 9 = 12 Again, each of these sums again appears with 3 outcomes (since Cube 1 has three faces showing 3). Thus, every sum from 1 through 12 is obtained exactly 3 times, giving an equal probability of 1⁄12 for each sum. None of the other options yield exactly 12 uniformly-likely sums from 1 to 12. For example, option D (standard dice) produces sums from 2 to 12 with varying probabilities, and option C doesn’t cover the sum 12. Therefore, the correct answer is B.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

Let’s roll back a bit and explore how numbering cubes can create a fair chance for every sum! The goal is to ensure all potential sums from 1 to 12 are equally likely. One fascinating approach is to consider combinations that yield unique sums with varying outcomes. In essence, if you want to maintain equal probability while numbering, balancing the frequency of numbers on each face is essential. For instance, if you go with option D, both cubes numbered 1 through 6 mirror standard dice, allowing sums from 2 (1+1) to 12 (6+6) with equal likelihood! If you’d like to dive deeper into this fun topic, a great resource would be combinatorial game theory, where understanding the mathematical probability behind games and outcomes can lead to exciting discoveries about chance and strategies! Who knew cubes could be so engaging?

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad