Pregunta
upstudy study bank question image url

7. [ \( -/ 2 \) Points] DETAILS MY NOTES SCALCET9 2.6.055. Let \( P \) and \( Q \) be polynomials with positive leading coefficients. Consider the limit below. (If the limit is infinite, enter ' \( \omega \) ' or ' - \( \infty \) ', as appropriate. If the limit does not otherwise exist, enter DNE.) (a) Find the limit if the degree of \( P \) is less than the degree of \( Q \). (a) \( x(x) \) (b) Find the limit if the degree of \( P \) is greater than the degree of \( Q \). (b)

Ask by Newton Phillips. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

- (a) The limit is 0. - (b) The limit is ∞.

Solución

To solve the problem, we need to analyze the limits of the ratio of two polynomials \( P(x) \) and \( Q(x) \) as \( x \) approaches infinity. We will consider two cases based on the degrees of the polynomials. ### Case (a): Degree of \( P \) is less than the degree of \( Q \) Let: - \( \deg(P) = m \) - \( \deg(Q) = n \) - Given that \( m < n \) The limit can be expressed as: \[ \lim_{x \to \infty} \frac{P(x)}{Q(x)} \] Since \( P(x) \) has a lower degree than \( Q(x) \), as \( x \) approaches infinity, the leading term of \( Q(x) \) will dominate the behavior of the fraction. Therefore, we can conclude that: \[ \lim_{x \to \infty} \frac{P(x)}{Q(x)} = 0 \] ### Case (b): Degree of \( P \) is greater than the degree of \( Q \) Now, let’s consider the second case: - Given that \( m > n \) The limit can be expressed as: \[ \lim_{x \to \infty} \frac{P(x)}{Q(x)} \] In this case, since \( P(x) \) has a higher degree than \( Q(x) \), the leading term of \( P(x) \) will dominate the behavior of the fraction. Therefore, we can conclude that: \[ \lim_{x \to \infty} \frac{P(x)}{Q(x)} = \infty \] ### Summary of Results - (a) If the degree of \( P \) is less than the degree of \( Q \), the limit is \( 0 \). - (b) If the degree of \( P \) is greater than the degree of \( Q \), the limit is \( \infty \). Thus, the answers are: - (a) \( 0 \) - (b) \( \infty \)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

When the degree of polynomial \( P \) is less than the degree of polynomial \( Q \), the behavior of the limit as \( x \) approaches infinity reveals that \( P(x) \) grows at a slower rate than \( Q(x) \). Thus, the limit tends toward zero. So, the answer for part (a) is \( 0 \). Conversely, if the degree of polynomial \( P \) is greater than the degree of polynomial \( Q \), then \( P(x) \) dominates the behavior of the limit as \( x \) approaches infinity. In this case, the limit goes to infinity since \( P(x) \) will grow much faster than \( Q(x) \). Therefore, the answer for part (b) is \( \infty \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad