Pregunta
upstudy study bank question image url

\( |\rightarrow| \begin{array}{l}\text { 49\% of U.S. adults have very little confidence in } \\ \text { newspapers. You randomly select 10 U.S. adults. Find the } \\ \text { probability that the number of U.S. adults who have very } \\ \text { little confidence in newspapers is (a) exactly five, (b) at } \\ \text { least six, and (c) less than four. }\end{array} \)

Ask by Gordon Franklin. in the United States
Nov 03,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(a) \( P(X = 5) \approx 0.457 \) (b) \( P(X \geq 6) \approx 0.604 \) (c) \( P(X < 4) \approx 0.333 \)

Solución

To solve this problem, we can model the situation using the binomial distribution. The binomial distribution is appropriate here because we have a fixed number of trials (10 U.S. adults), two possible outcomes (having very little confidence in newspapers or not), and a constant probability of success (49% or 0.49). Let \( n = 10 \) (the number of trials) and \( p = 0.49 \) (the probability of success). The probability mass function of a binomial distribution is given by: \[ P(X = k) = \binom{n}{k} p^k (1-p)^{n-k} \] where \( \binom{n}{k} \) is the binomial coefficient, which can be calculated as: \[ \binom{n}{k} = \frac{n!}{k!(n-k)!} \] ### (a) Probability that exactly five adults have very little confidence in newspapers We want to find \( P(X = 5) \): \[ P(X = 5) = \binom{10}{5} (0.49)^5 (0.51)^{10-5} \] Calculating \( \binom{10}{5} \): \[ \binom{10}{5} = \frac{10!}{5!5!} = \frac{10 \times 9 \times 8 \times 7 \times 6}{5 \times 4 \times 3 \times 2 \times 1} = 252 \] Now substituting the values: \[ P(X = 5) = 252 \times (0.49)^5 \times (0.51)^5 \] Calculating \( (0.49)^5 \) and \( (0.51)^5 \): \[ (0.49)^5 \approx 0.049 \] \[ (0.51)^5 \approx 0.037 \] Now substituting these values: \[ P(X = 5) \approx 252 \times 0.049 \times 0.037 \approx 252 \times 0.001813 \approx 0.457 \] ### (b) Probability that at least six adults have very little confidence in newspapers We want to find \( P(X \geq 6) \), which can be calculated as: \[ P(X \geq 6) = P(X = 6) + P(X = 7) + P(X = 8) + P(X = 9) + P(X = 10) \] Calculating each term: 1. **For \( P(X = 6) \)**: \[ P(X = 6) = \binom{10}{6} (0.49)^6 (0.51)^4 \] \[ \binom{10}{6} = 210 \] \[ P(X = 6) = 210 \times (0.49)^6 \times (0.51)^4 \approx 210 \times 0.024 \times 0.067 \approx 0.327 \] 2. **For \( P(X = 7) \)**: \[ P(X = 7) = \binom{10}{7} (0.49)^7 (0.51)^3 \] \[ \binom{10}{7} = 120 \] \[ P(X = 7) = 120 \times (0.49)^7 \times (0.51)^3 \approx 120 \times 0.012 \times 0.132 \approx 0.191 \] 3. **For \( P(X = 8) \)**: \[ P(X = 8) = \binom{10}{8} (0.49)^8 (0.51)^2 \] \[ \binom{10}{8} = 45 \] \[ P(X = 8) = 45 \times (0.49)^8 \times (0.51)^2 \approx 45 \times 0.006 \times 0.260 \approx 0.070 \] 4. **For \( P(X = 9) \)**: \[ P(X = 9) = \binom{10}{9} (0.49)^9 (0.51)^1 \] \[ \binom{10}{9} = 10 \] \[ P(X = 9) = 10 \times (0.49)^9 \times (0.51)^1 \approx 10 \times 0.003 \times 0.51 \approx 0.015 \] 5. **For \( P(X = 10) \)**: \[ P(X = 10) = \binom{10}{10} (0.49)^{10} (0.51)^0 \] \[ P(X = 10) = 1 \times (0.49)^{10} \approx 0.001 \] Now summing these probabilities: \[ P(X \geq 6) \approx 0.327 + 0.191 + 0.070 + 0.015 + 0.001 \approx 0.604 \] ### (c) Probability that less than four adults have very little confidence in newspapers We want to find \( P(X < 4) \), which can be calculated as: \[ P(X < 4) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) \] Calculating each term: 1. **For \( P(X = 0) \)**: \[ P(X = 0) = \binom{10}{0} (0.49)^0 (0.51)^{10} = 1 \times 1 \times (0.51)^{10} \approx 0.002 \] 2. **For \( P(X = 1) \)**: \[ P(X = 1) = \binom{10}{1} (0.49)^1 (0.51)^9 = 10 \times 0.49 \times (0.51)^9 \approx 10 \times 0.49 \times 0.004 \approx 0.020 \] 3. **For \( P(X = 2) \)**: \[ P(X = 2) = \binom{10}{2} (0.49)^2 (0.51)^8 = 45 \times (0.49)^2 \times (0.51)^8 \approx 45 \times 0.2401 \times 0.008 \approx 0.086 \] 4. **For \( P(X = 3) \)**: \[ P(X = 3) = \binom{10}{3} (0.49)^3 (0.51)^7 = 120 \times (0.49)^3 \times (0.51)^7 \approx 120 \times 0.117649 \times 0.016 \approx 0.225 \] Now summing these probabilities: \[ P(X < 4) \approx 0.002 + 0.020 + 0.086 + 0.225 \approx 0.333 \] ### Summary of Results - (a) \( P(X = 5) \approx 0.457 \) - (b) \( P(X \geq 6) \approx 0.604 \) - (c) \( P(X < 4) \approx 0.333 \)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To solve this problem, we'll use the binomial probability formula which is given by: \[ P(X = k) = \binom{n}{k} p^k (1-p)^{n-k} \] where \( n \) is the number of trials (10 in this case), \( k \) is the number of successes, and \( p \) is the probability of success (0.49 for very little confidence in newspapers). For part (a), finding the probability of exactly five adults having very little confidence: 1. **Calculate \( P(X = 5) \)**: \[ P(X = 5) = \binom{10}{5} (0.49)^5 (0.51)^5 \] 2. To determine \( \binom{10}{5} \): \[ \binom{10}{5} = \frac{10!}{5!5!} = 252 \] 3. Now compute: \[ P(X = 5) = 252 \cdot (0.49)^5 \cdot (0.51)^5 \approx 0.227 \] Now, for part (b), finding the probability that at least six adults have very little confidence (i.e., \( P(X \geq 6) \)): 1. **Calculate \( P(X \geq 6) \)**: \[ P(X \geq 6) = P(X = 6) + P(X = 7) + P(X = 8) + P(X = 9) + P(X = 10) \] 2. Use \( P(X = k) \) for \( k = 6, 7, 8, 9, 10 \): - This involves calculating \( P(X = k) \) for each \( k \) where \( 6 \leq k \leq 10 \) using the binomial formula. 3. Sum up the probabilities: \[ P(X \geq 6) \approx 0.486 \] Finally, for part (c), finding the probability that fewer than four adults have very little confidence (i.e., \( P(X < 4) \)): 1. **Calculate \( P(X < 4) \)**: \[ P(X < 4) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) \] 2. Use the binomial formula for each \( k \): - Perform similar calculations using the binomial formula for \( k = 0, 1, 2, 3 \). 3. After summing these probabilities: \[ P(X < 4) \approx 0.309 \] That's how you can calculate the probabilities for this scenario using the binomial distribution! If you have any further questions or need calculations clarified, just let me know!

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad