Pregunta

(g) Consider the arithmetic series \( 4-2-8-\ldots-260 \). (1) Calculate the sum of the series. (2) Determine \( m \) if \( 4-2-8-\ldots \) (to \( m \) terms) \( =-1700 \). (3) Calculate the greatest value of \( k \) for which \( S_{k}>-800 \).

Ask by Osborne Chadwick. in South Africa
Jan 29,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

**Part (1):** The sum of the series is **-5760**. **Part (2):** \( m = 25 \) **Part (3):** The greatest value of \( k \) is **17**.

Solución

Let's analyze the arithmetic series \( 4, -2, -8, \ldots, -260 \) step by step. ### Given: - **First term (\( a_1 \))**: 4 - **Common difference (\( d \))**: \( -2 - 4 = -6 \) (since the second term is \(-2\)) The general term of the series is: \[ a_n = a_1 + (n-1)d = 4 + (n-1)(-6) = 10 - 6n \] ### Part (1): Calculate the Sum of the Series We need to find the sum of the series up to the term \(-260\). 1. **Find the number of terms (\( n \))**: \[ 10 - 6n = -260 \\ -6n = -270 \\ n = 45 \] 2. **Calculate the sum (\( S_{45} \))** using the formula for the sum of an arithmetic series: \[ S_n = \frac{n}{2}(a_1 + a_n) \\ S_{45} = \frac{45}{2}(4 + (-260)) = \frac{45}{2}(-256) = 45 \times (-128) = -5760 \] **Answer for Part (1):** The sum of the series is **\(-5760\)**. ### Part (2): Determine \( m \) if the Sum to \( m \) Terms is \(-1700\) We need to solve for \( m \) in: \[ S_m = \frac{m}{2}(a_1 + a_m) = -1700 \] Where: \[ a_m = 10 - 6m \] Substituting: \[ \frac{m}{2}(4 + (10 - 6m)) = -1700 \\ \frac{m}{2}(14 - 6m) = -1700 \\ m(14 - 6m) = -3400 \\ -6m^2 + 14m + 3400 = 0 \\ 6m^2 - 14m - 3400 = 0 \] Solving the quadratic equation: \[ m = \frac{14 \pm \sqrt{(-14)^2 - 4 \cdot 6 \cdot (-3400)}}{2 \cdot 6} \\ m = \frac{14 \pm \sqrt{196 + 81600}}{12} \\ m = \frac{14 \pm \sqrt{81800}}{12} \\ m = \frac{14 \pm 286}{12} \] Only the positive root makes sense: \[ m = \frac{14 + 286}{12} = \frac{300}{12} = 25 \] **Answer for Part (2):** \( m = 25 \) ### Part (3): Find the Greatest \( k \) such that \( S_k > -800 \) We need to find the largest integer \( k \) where the sum \( S_k \) satisfies: \[ S_k = \frac{k}{2}(14 - 6k) > -800 \] Simplifying: \[ k(14 - 6k) > -1600 \\ -6k^2 + 14k + 1600 > 0 \\ 6k^2 - 14k - 1600 < 0 \] Solving the quadratic inequality: \[ k = \frac{14 \pm \sqrt{14^2 + 4 \cdot 6 \cdot 1600}}{2 \cdot 6} \\ k = \frac{14 \pm \sqrt{196 + 38400}}{12} \\ k = \frac{14 \pm \sqrt{38600}}{12} \approx \frac{14 \pm 196.46}{12} \] The positive root is approximately \( 17.54 \). Since \( k \) must be an integer: \[ k = 17 \] For \( k = 17 \): \[ S_{17} = \frac{17}{2}(14 - 6 \times 17) = \frac{17}{2}(14 - 102) = \frac{17}{2}(-88) = -748 > -800 \] For \( k = 18 \): \[ S_{18} = \frac{18}{2}(14 - 6 \times 18) = 9(-104) = -936 < -800 \] Thus, the greatest \( k \) is 17. **Answer for Part (3):** The greatest value of \( k \) is **17**. ### Summary of All Parts: 1. **Sum of the series:** \(-5760\) 2. **Value of \( m \):** \(25\) 3. **Greatest \( k \) with \( S_k > -800 \):** \(17\)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To solve the problem regarding the arithmetic series \( S_n = 4, -2, -8, \ldots, -260 \), we begin by determining the common difference and the number of terms. **Step 1: Identify the common difference (d).** The first term \( a = 4 \), and the second term \( -2 \). To find the common difference: \[ d = -2 - 4 = -6. \] **Step 2: Find the number of terms, \( n \).** The \( n \)-th term of an arithmetic series can be found using the formula: \[ a_n = a + (n-1)d. \] We know that the last term \( a_n = -260 \). Setting this in the formula gives: \[ -260 = 4 + (n-1)(-6). \] Rearranging it: \[ -260 - 4 = (n-1)(-6) \implies -264 = (n-1)(-6). \] Solving for \( n \): \[ n - 1 = \frac{264}{6} = 44 \implies n = 45. \] **Step 3: Calculate the sum of the series.** The sum of an arithmetic series can be calculated by: \[ S_n = \frac{n}{2} \cdot (a + a_n). \] Plugging in the values we have: \[ S_{45} = \frac{45}{2} \cdot (4 + (-260)) = \frac{45}{2} \cdot (-256) = 45 \cdot (-128) = -5760. \] Thus, the sum of the series is: \[ \text{Sum} = -5760. \] **Step 4: Find \( m \) such that \( S_m = -1700 \).** Using the sum formula again for \( m \) terms: \[ S_m = \frac{m}{2} \cdot (4 + a_m) = \frac{m}{2} \cdot (4 + (4 + (m-1)(-6))). \] This simplifies to: \[ S_m = \frac{m}{2} \cdot (4 + 4 - 6(m-1)) = \frac{m}{2} \cdot (8 - 6m + 6) = \frac{m}{2} \cdot (14 - 6m). \] Setting this equal to -1700: \[ \frac{m(14 - 6m)}{2} = -1700 \implies m(14 - 6m) = -3400. \] This expands to: \[ -6m^2 + 14m + 3400 = 0. \] Multiplying through by -1 gives: \[ 6m^2 - 14m - 3400 = 0. \] Using the quadratic formula: \[ m = \frac{-(-14) \pm \sqrt{(-14)^2 - 4 \cdot 6 \cdot (-3400)}}{2 \cdot 6} = \frac{14 \pm \sqrt{196 + 81600}}{12}. \] Calculating the discriminant: \[ \sqrt{81896} \approx 286.5. \] Thus, \[ m = \frac{14 \pm 286.5}{12} \implies m_1 \approx 25.5 \quad m_2 \approx -22.66. \] We take the positive integer for \( m = 26 \). **Step 5: Find \( k \) such that \( S_k > -800 \).** We use the sum formula again: \[ S_k = \frac{k}{2} \cdot (4 + (4 + (k-1)(-6))) = \frac{k}{2} \cdot (8 - 6(k-1)). \] Setting the inequality: \[ \frac{k}{2} \cdot (14 - 6k) > -800 \implies k(14 - 6k) > -1600. \] This can be written as: \[ -6k^2 + 14k + 1600 > 0. \] Multiplying by -1 gives: \[ 6k^2 - 14k - 1600 < 0. \] Finding the roots: \[ k = \frac{-(-14) \pm \sqrt{(-14)^2 - 4 \cdot 6 \cdot (-1600

preguntas relacionadas

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad