Three trigonometric functions for a given angle are shown below. \( \csc \theta=\frac{13}{12}, \sec \theta=-\frac{13}{5}, \cot \theta=-\frac{5}{12} \) What are the coordinates of point \( (x, y) \) on the terminal ray of angle \( \theta \), assuming that the values above were not simplified? \( (-5,12) \) \( (5,-12) \) \( (-12,5) \) \( (12,-5) \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To find the coordinates \( (x, y) \) for the terminal ray of angle \( \theta \), we can use the definitions of the given trigonometric functions. We know: 1. \( \csc \theta = \frac{1}{\sin \theta} \), which gives us \( \sin \theta = \frac{12}{13} \). 2. \( \sec \theta = \frac{1}{\cos \theta} \), giving us \( \cos \theta = -\frac{5}{13} \). 3. \( \cot \theta = \frac{\cos \theta}{\sin \theta} \), which checks out since \( \cot \theta = -\frac{5}{12} \). Now we can determine the coordinates. Using \( r = 13 \) (the hypotenuse from \( r^2 = x^2 + y^2 \)), we find: - \( y = r \cdot \sin \theta = 13 \cdot \frac{12}{13} = 12 \) - \( x = r \cdot \cos \theta = 13 \cdot -\frac{5}{13} = -5 \) Therefore, the coordinates are \( (-5, 12) \). The answer is: \( (-5,12) \)
