Pregunta
upstudy study bank question image url

\( \begin{array}{l} 8^{-2}=\frac{1}{64}\\ \text { h) }\\ 0=\log _{6} 1\\ \begin{array}{ll} \log _{x} x^{4}=4 \\ m^{n}=p & \log _{6}\left(\frac{1}{36}\right)=-2 \\ 3^{0}=1 & 2=\log _{1} x \\ 10^{-3}=0,001 & \\ \frac{1}{25}=5^{-2} & \\ \left(\frac{1}{2}\right)^{-2}=4 & \end{array} \end{array} \)

Ask by Zimmerman Stanley. in South Africa
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The following statements are correct: 1. \( 8^{-2} = \frac{1}{64} \) 2. \( 0 = \log_{6} 1 \) 3. \( \log_{x} x^{4} = 4 \) 5. \( \log_{6}\left(\frac{1}{36}\right) = -2 \) 6. \( 3^{0} = 1 \) 8. \( \frac{1}{25} = 5^{-2} \) 10. \( \left(\frac{1}{2}\right)^{-2} = 4 \) The statement \( 2 = \log_{1} x \) is incorrect because the logarithm base 1 is undefined.

Solución

Let's analyze the given equations and statements step by step. 1. **First Statement:** \[ 8^{-2} = \frac{1}{64} \] This is correct. We can verify it: \[ 8^{-2} = \frac{1}{8^2} = \frac{1}{64} \] 2. **Second Statement:** \[ 0 = \log_{6} 1 \] This is also correct. The logarithm of 1 in any base is 0: \[ \log_{b} 1 = 0 \quad \text{for any } b > 0 \] 3. **Third Statement:** \[ \log_{x} x^{4} = 4 \] This is true. By the properties of logarithms: \[ \log_{b} b^{k} = k \quad \text{so here } k = 4 \] 4. **Fourth Statement:** \[ m^{n} = p \] This is a general expression and does not require verification without specific values. 5. **Fifth Statement:** \[ \log_{6}\left(\frac{1}{36}\right) = -2 \] We can verify this: \[ \frac{1}{36} = 6^{-2} \implies \log_{6}(6^{-2}) = -2 \] 6. **Sixth Statement:** \[ 3^{0} = 1 \] This is correct. Any non-zero number raised to the power of 0 is 1. 7. **Seventh Statement:** \[ 2 = \log_{1} x \] This statement is incorrect. The logarithm base 1 is undefined because you cannot raise 1 to any power to get a number other than 1. 8. **Eighth Statement:** \[ 10^{-3} = 0.001 \] This is correct. We can verify it: \[ 10^{-3} = \frac{1}{10^3} = \frac{1}{1000} = 0.001 \] 9. **Ninth Statement:** \[ \frac{1}{25} = 5^{-2} \] This is correct. We can verify it: \[ \frac{1}{25} = \frac{1}{5^2} = 5^{-2} \] 10. **Tenth Statement:** \[ \left(\frac{1}{2}\right)^{-2} = 4 \] This is correct. We can verify it: \[ \left(\frac{1}{2}\right)^{-2} = \left(2\right)^{2} = 4 \] ### Summary of Validity: - Valid: 1, 2, 3, 5, 6, 8, 9, 10 - Invalid: 7 If you have any specific questions or need further assistance with any of these statements, feel free to ask!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

Did you know that logarithms can be traced back to the early 17th century? They were invented by John Napier and popularized by the use of logarithmic tables, which made calculations simpler, especially for astronomers and navigators. Logarithms help you convert multiplicative relationships into additive ones, which is a major game-changer in calculations. When using logarithms, it’s easy to confuse the base and the value. A common mistake is writing \(\log_a b = c\) and then flipping \(a, b, c\) around. Remember, it's an equation that maintains the relationship such that \(a^c = b\). Always check that the base is positive and not equal to 1; otherwise, you're headed for trouble!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad