Pregunta
upstudy study bank question image url

Find the volume of the solid
formed by revolving the region
bound by the graphs ,
, and about the
-axis. Use the disk method.
Round your answer to the nearest thousandth.

Ask by Deleon Henry. in the United States
Mar 23,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The volume of the solid is approximately 1447.256 cubic units.

Solución

We first note that the region is bounded by
  • ,
  • ,
  • , and
  • .
For any in , the -coordinate of the curve is
which is negative in this interval (since and thus ). The region between and is located below the -axis. However, when we revolve the region about the -axis, the vertical distance between and becomes the radius of a typical disk. That is, for a fixed , the radius is
Using the disk method, the volume is given by
Since the integrand is an even function, we can simplify the integral by doubling the integral from 0 to 2:
First, expand the integrand:
Thus,
Now, compute the antiderivative term by term:
Substitute these into the formula:
Thus, the volume is
To express the volume in a decimal approximation, we have
Rounded to the nearest thousandth, the volume is approximately

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the volume of the solid formed by revolving the region bounded by the graphs , , , and about the -axis, we’ll use the disk method.
  1. Identify the area to revolve: First, we find the points of intersection of the curve and the line :
    The region of interest is between and .
  2. Determine the volume using the disk method: The volume of the solid of revolution can be expressed as:
    where . This gives us:
  3. Expand :
  4. Set up the integral:
  5. Calculate the integral:
    Evaluating at :
    Evaluating at :
  6. Combine the results:
    Therefore:
  7. Round the volume to the nearest thousandth:

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad