Pregunta
upstudy study bank question image url

3. Any n-sided polygon has \( \frac{1}{2} n(n-3) \) diagonals. Given a polygon \( n \) 27 diagonals, form a quadratic equation in \( n \) and solve the equation t find the number of sides in the polygon.

Ask by Mccoy Estrada. in Nigeria
Feb 18,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The polygon has 9 sides.

Solución

We start with the formula for the number of diagonals in an n-sided polygon:   (1/2) · n(n − 3) = 27 Multiply both sides of the equation by 2 to eliminate the fraction:   n(n − 3) = 54 Expanding the left-hand side gives:   n² − 3n = 54 Subtract 54 from both sides to form the quadratic equation:   n² − 3n − 54 = 0 To solve this quadratic equation, we can factor it if possible. We look for two numbers that multiply to −54 and add to −3. The numbers −9 and 6 work because:   (−9) · 6 = −54 and (−9) + 6 = −3 Thus, we factor the quadratic as follows:   (n − 9)(n + 6) = 0 Setting each factor equal to zero gives:   n − 9 = 0  or  n + 6 = 0 So, the solutions are:   n = 9  or  n = −6 Since n represents the number of sides of a polygon, it must be a positive integer. Therefore, we discard n = −6. Thus, the polygon has 9 sides.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the number of sides \( n \) in a polygon with 27 diagonals, we can start from the formula for diagonals: \[ \frac{1}{2} n(n-3) = 27 \] Multiplying both sides by 2 to eliminate the fraction gives: \[ n(n-3) = 54 \] Now, we can rearrange this into a standard quadratic equation: \[ n^2 - 3n - 54 = 0 \] Next, we use the quadratic formula \( n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \) where \( a = 1, b = -3, c = -54 \): \[ n = \frac{-(-3) \pm \sqrt{(-3)^2 - 4 \cdot 1 \cdot (-54)}}{2 \cdot 1} \] \[ n = \frac{3 \pm \sqrt{9 + 216}}{2} \] \[ n = \frac{3 \pm \sqrt{225}}{2} \] \[ n = \frac{3 \pm 15}{2} \] Calculating the two possible values: 1. \( n = \frac{18}{2} = 9 \) 2. \( n = \frac{-12}{2} = -6 \) (not valid because \( n \) must be positive) Thus, the polygon has **9 sides**. Now, let's add some extra fun knowledge about polygons and their diagonals! Did you know that the humble triangle, being the simplest polygon, has no diagonals at all? That's because it only has three vertices, and if you connect them all, you simply end up with the triangle itself! It's not until you hit the quadrilateral with four sides that you start to see the first diagonal! Speaking of shapes in the real world, polygons are everywhere! From the layout of city blocks (often in rectangles or squares) to the design of logos and architectural structures, understanding polygons and their properties gives insight into practical applications in urban planning and graphic design. Feeling inspired? Why not sketch some polygons with varying sides and play around with the diagonal formula!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad