Express the sequence \( \left\{a_{n}\right\}_{n=1}^{\infty} \) as an equivalent sequence of the form \( \left\{b_{n}\right\}_{n=4}^{\infty} \) \( \left\{n^{2}+3 n-8\right\}_{n=1}^{\infty} \) An equivalent sequence is \( \left\}_{n=4}^{\infty}\right. \). (Simplify your answer. Do not factor.)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To express the sequence \( \{a_n\}_{n=1}^{\infty} \) as an equivalent sequence starting from \( n=4 \), we first note the general term of the sequence is given by: \[ a_n = n^2 + 3n - 8 \] To find the equivalent sequence \( \{b_n\}_{n=4}^{\infty} \), we need to replace \( n \) with \( n + 3 \) to account for the new starting index. To do this: \[ b_n = a_{n+3} = (n+3)^2 + 3(n+3) - 8 \] Now, we can simplify this expression: 1. Expand \( (n+3)^2 \): \[ (n+3)^2 = n^2 + 6n + 9 \] 2. Expand \( 3(n+3) \): \[ 3(n+3) = 3n + 9 \] 3. Combine everything: \[ b_n = n^2 + 6n + 9 + 3n + 9 - 8 \] 4. Combine like terms: \[ b_n = n^2 + 9n + 10 \] Thus, the equivalent sequence is: \[ \{b_n\}_{n=4}^{\infty} = \{n^2 + 9n + 10\}_{n=4}^{\infty} \] This gives us the final result for the equivalent sequence.
