Responder
The derivative \( f'(x) \) of the function \( f(x) = (x + 2)\sqrt{4x - x^2} \) is:
\[
f'(x) = \frac{-2x^2 + 4x + 4}{\sqrt{4x - x^2}}.
\]
Solución
To find the derivative \( f'(x) \) of the function
\[ f(x) = (x + 2) \sqrt{4x - x^2}, \]
we'll use the **product rule** and the **chain rule** from calculus.
### Step 1: Apply the Product Rule
The product rule states that if you have a function \( f(x) = u(x) \cdot v(x) \), then the derivative \( f'(x) \) is:
\[ f'(x) = u'(x) \cdot v(x) + u(x) \cdot v'(x). \]
Here, let:
- \( u(x) = x + 2 \)
- \( v(x) = \sqrt{4x - x^2} \)
First, compute the derivatives \( u'(x) \) and \( v'(x) \):
- \( u'(x) = \frac{d}{dx}(x + 2) = 1 \)
- To find \( v'(x) \), we'll use the chain rule.
### Step 2: Apply the Chain Rule to \( v(x) \)
The chain rule states that if \( v(x) = \sqrt{g(x)} \), then:
\[ v'(x) = \frac{1}{2\sqrt{g(x)}} \cdot g'(x). \]
Here, \( g(x) = 4x - x^2 \), so:
- \( g'(x) = 4 - 2x \)
- Thus,
\[ v'(x) = \frac{1}{2\sqrt{4x - x^2}} \cdot (4 - 2x) = \frac{4 - 2x}{2\sqrt{4x - x^2}}. \]
### Step 3: Combine Using the Product Rule
Now, substitute \( u'(x) \), \( u(x) \), and \( v'(x) \) into the product rule formula:
\[
f'(x) = u'(x) \cdot v(x) + u(x) \cdot v'(x) = 1 \cdot \sqrt{4x - x^2} + (x + 2) \cdot \frac{4 - 2x}{2\sqrt{4x - x^2}}.
\]
### Step 4: Simplify the Expression
Combine the terms over a common denominator:
\[
f'(x) = \frac{2(4x - x^2) + (x + 2)(4 - 2x)}{2\sqrt{4x - x^2}}.
\]
Calculate the numerator:
\[
\begin{align*}
2(4x - x^2) &= 8x - 2x^2, \\
(x + 2)(4 - 2x) &= 4x + 8 - 2x^2 - 4x = 8 - 2x^2.
\end{align*}
\]
So,
\[
8x - 2x^2 + 8 - 2x^2 = -4x^2 + 8x + 8.
\]
Therefore,
\[
f'(x) = \frac{-4x^2 + 8x + 8}{2\sqrt{4x - x^2}}.
\]
### Step 5: Simplify Further (Optional)
Factor out a common factor in the numerator:
\[
-4x^2 + 8x + 8 = -2(2x^2 - 4x - 4) = -2(x^2 - 2x - 2).
\]
Thus, the derivative simplifies to:
\[
f'(x) = \frac{-2(x^2 - 2x - 2)}{\sqrt{4x - x^2}}.
\]
### Final Answer
The derivative of \( f(x) = (x + 2)\sqrt{4x - x^2} \) is:
\[
f'(x) = \frac{-2x^2 + 4x + 4}{\sqrt{4x - x^2}}.
\]
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución