Pregunta
upstudy study bank question image url

Solve the inequality. Graph the solution set, and write the solution set in set-builder notation and inter integers. \( -5 t-5<-(t+2)-4 t \)

Ask by Ryan Bartlett. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The inequality is always true for any value of t, so the solution set includes all real numbers and all integers.

Solución

We start with the inequality   –5t – 5 < –(t + 2) – 4t. Step 1. Simplify the right side:   –(t + 2) – 4t = –t – 2 – 4t = –5t – 2. Now the inequality becomes:   –5t – 5 < –5t – 2. Step 2. Add 5t to both sides to eliminate the t-term:   (–5t – 5) + 5t < (–5t – 2) + 5t   –5 < –2. Step 3. Analyze the result:   The inequality –5 < –2 is always true. This means that no matter what value t takes, the original inequality holds. Solution in Different Forms: 1. Interval Notation:   The solution set is (–∞, ∞). 2. Set-Builder Notation:   { t ∈ ℝ }. 3. Integer Solution:   Since every real number is a solution, every integer is also a solution. In other words, the solution set among the integers is ℤ (all integers). Graphing the Solution Set:   Draw a horizontal number line.   Shade the entire line, indicating that every point on the line is included.   Place open circles (or no special point marks) everywhere to show there are no restrictions. Thus, the inequality is true for all t, so the solution set is all real numbers (and hence all integers).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To solve the inequality \(-5t - 5 < -(t + 2) - 4t\), let's first simplify both sides: 1. Start by distributing on the right: \(-5t - 5 < -t - 2 - 4t\) Combining like terms gives: \(-5t - 5 < -5t - 2\) 2. Now, we can isolate the terms: Add \(5t\) to both sides: \(-5 < -2\) This is always true, meaning the inequality holds for all values of \(t\). For graphing, you would shade the entire number line. In set-builder notation, the solution set is \(\{ t | t \in \mathbb{R} \}\), and in integers, it's \(\mathbb{Z}\), which includes all integers.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad