Pregunta
upstudy study bank question image url

Prove the identities. \( 1 \frac{\cos x}{1-\sin x}=\frac{1+\sin x}{\cos x} \) \( 2 \frac{\cos ^{2} x-\cos x-\sin ^{2} x}{2 \sin x \cdot \cos x+\sin x}=\frac{1}{\tan x}-\frac{1}{\sin x} \)

Ask by Rose Ortiz. in South Africa
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The two trigonometric identities are proven as follows: 1. \( \frac{\cos x}{1 - \sin x} = \frac{1 + \sin x}{\cos x} \) 2. \( \frac{\cos^2 x - \cos x - \sin^2 x}{2 \sin x \cos x + \sin x} = \frac{1}{\tan x} - \frac{1}{\sin x} \) Both identities have been verified using standard trigonometric identities and algebraic manipulations.

Solución

We wish to prove two trigonometric identities. We will prove each in turn. ────────────────────────────── Identity 1:   cos x/(1 – sin x) = (1 + sin x)/cos x Step 1. Start with the left-hand side and multiply numerator and denominator by (1 + sin x) (this is a common technique to “rationalize” the denominator):   cos x/(1 – sin x) = [cos x(1 + sin x)]/[(1 – sin x)(1 + sin x)] Step 2. Recognize that (1 – sin x)(1 + sin x) is a difference of two squares:   (1 – sin x)(1 + sin x) = 1 – sin²x Step 3. Using the Pythagorean identity 1 – sin²x = cos²x, we have:   cos x/(1 – sin x) = [cos x(1 + sin x)]/cos²x Step 4. Cancel a common factor of cos x (assuming cos x ≠ 0):   [cos x(1 + sin x)]/cos²x = (1 + sin x)/cos x Thus, we have shown:   cos x/(1 – sin x) = (1 + sin x)/cos x ────────────────────────────── Identity 2:   [cos²x – cos x – sin²x] / [2 sin x · cos x + sin x] = 1/ tan x – 1/ sin x Step 1. First, simplify the right-hand side. Recall that tan x = sin x/cos x, so:   1/tan x = cos x/sin x Thus:   1/ tan x – 1/ sin x = (cos x/sin x) – (1/sin x) = (cos x – 1)/ sin x Step 2. Now, we wish to show that:   [cos²x – cos x – sin²x] / [2 sin x cos x + sin x] = (cos x – 1)/ sin x Step 3. Factor the denominator. Notice that:   2 sin x · cos x + sin x = sin x (2 cos x + 1) Step 4. Write the identity we need to prove as:   [cos²x – cos x – sin²x] / [sin x (2 cos x + 1)] = (cos x – 1)/ sin x Multiply both sides by sin x (assuming sin x ≠ 0):   [cos²x – cos x – sin²x] / (2 cos x + 1) = cos x – 1 Step 5. Multiply both sides by (2 cos x + 1):   cos²x – cos x – sin²x = (cos x – 1)(2 cos x + 1) Step 6. Expand the right-hand side:   (cos x – 1)(2 cos x + 1) = [2 cos²x + cos x – 2 cos x – 1] = 2 cos²x – cos x – 1 Step 7. Hence, the equation becomes:   cos²x – cos x – sin²x = 2 cos²x – cos x – 1 Step 8. Subtract cos²x – cos x from both sides:   – sin²x = cos²x – 1 Step 9. Recognize that the right-hand side is equal to – sin²x by the Pythagorean identity cos²x – 1 = – sin²x. Thus, the equation holds true. ────────────────────────────── Conclusion: 1) cos x/(1 – sin x) = (1 + sin x)/cos x 2) [cos²x – cos x – sin²x] / [2 sin x cos x + sin x] = 1/ tan x – 1/ sin x Each identity has been verified using standard trigonometric identities and algebraic manipulations.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

Let’s tackle the first identity: Starting off with the left side: \[ 1 \cdot \frac{\cos x}{1 - \sin x} = \frac{\cos x}{1 - \sin x} \] To simplify, multiply the numerator and the denominator by the conjugate of the denominator: \[ \frac{\cos x(1 + \sin x)}{(1 - \sin x)(1 + \sin x)} = \frac{\cos x(1 + \sin x)}{1 - \sin^2 x} = \frac{\cos x(1 + \sin x)}{\cos^2 x} \] This simplifies to: \[ \frac{1 + \sin x}{\cos x} \] Thus, we have shown that: \[ \frac{\cos x}{1 - \sin x} = \frac{1 + \sin x}{\cos x} \] So, the identity holds. Now for the second identity: Starting with the left side: \[ \frac{\cos^2 x - \cos x - \sin^2 x}{2 \sin x \cdot \cos x + \sin x} \] The numerator simplifies to: \[ \cos^2 x - \sin^2 x - \cos x = \cos^2 x - (\sin^2 x + \cos x) = \cos^2 x - (1 - \cos^2 x) - \cos x = 2 \cos^2 x - 1 - \cos x \] Now, the denominator simplifies to: \[ \sin x(2 \cos x + 1) \] So the entire fraction looks like: \[ \frac{2 \cos^2 x - 1 - \cos x}{\sin x(2 \cos x + 1)} \] Now we can factorize \(2 \cos^2 x - 1\) as \(\cos(2x)\) and rearrange terms: The right side is: \[ \frac{1}{\tan x} - \frac{1}{\sin x} \] Expressing these terms with sine and cosine gives: \[ \frac{\cos x}{\sin x} - \frac{1}{\sin x} = \frac{\cos x - 1}{\sin x} \] Therefore, we must show the left matches this outcome, ultimately verifying the original identity. This proves both identities.

preguntas relacionadas

8. Simplify without using a calculator. (8.1) \( \frac{\sin \left(180^{\circ}-x\right) \cdot \tan \left(360^{\circ}-x\right)}{\cos \left(80^{\circ}-x\right)} \times \frac{\cos \left(-180^{\circ}-x\right)}{\cos \left(360^{\circ}+x\right) \sin \left(360^{\circ}-x\right)} \) \( 8.2 \frac{\cos 135^{\circ} \sin 160^{\circ}}{\sin 225^{\circ} \cos 70^{\circ}} \) (8.3) \( \frac{\sin (-\theta)+\cos 120^{\circ}+\tan \left(-180^{\circ}-\theta\right)}{\sin ^{2} 225^{\circ}-\tan (-\theta)-\cos \left(90^{\circ}+\theta\right)} \) B.4 \( 4^{x} \frac{\sin 247^{\circ} \cdot \tan 23^{\circ} \cdot \cos 113^{\circ}}{\sin \left(-157^{\circ}\right)} \) (8.5) \( \frac{3 \cos 150^{\circ} \cdot \sin 270^{\circ}}{\tan \left(-45^{\circ}\right) \cdot \cos 600^{\circ}} \) 8.6) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}+x\right)}{\sin (-x)}-\sin y \cdot \cos \left(90^{\circ}-y\right) \) \( 8.7 \frac{\tan 30^{\circ} \cdot \sin 60^{\circ} \cdot \cos 25^{\circ}}{\cos 135^{\circ} \cdot \sin \left(-45^{\circ}\right) \cdot \sin 65^{\circ}} \) 6.8) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}-x\right)}{\cos \left(90^{\circ}+x\right)}-\frac{\cos \left(180^{\circ}-x\right)}{\sin \left(90^{\circ}+x\right)} \) \( 8.9 \frac{\sin 189^{\circ}}{\tan 549^{\circ}}-\frac{\cos ^{2}\left(-9^{\circ}\right)}{\sin 99^{\circ}} \) Solving trigonometric equations (no calculators) (1.) If \( \sin \mathrm{A}=\frac{-3}{5} \) and \( 0^{\circ}<\mathrm{A}<270^{\circ} \) determine the value of: \( 1.1 \cos A \) \( 1.2 \tan A \). (2.) If \( -5 \tan \theta-3=0 \) and \( \sin \theta<0 \), determine: \( 2.1 \sin ^{2} \theta^{\circ} \) \( 2.25 \cos \theta \) \( 2.3 \quad 1-\cos ^{2} \theta \) 3. If \( 13 \cos \theta+12=0 \) and \( 180^{\circ}<\theta<360^{\circ} \), evaluate: \( 3.2 \tan \theta \) \( 3.1 \sin \theta \cos \theta \) \( 3.3 \sin ^{2} \theta+\cos ^{2} \theta \). (4.) If \( 3 \tan \theta-2=0 \) and \( \theta \in\left[90^{\circ} ; 360^{\circ}\right] \), determine, the value of \( \sqrt{13}(\sin \theta-\cos \theta \) (5.) If \( \cos 52^{\circ}=k \) as illustrated in the diagram, determine each of the following i
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad