Prove the identities. \( 1 \frac{\cos x}{1-\sin x}=\frac{1+\sin x}{\cos x} \) \( 2 \frac{\cos ^{2} x-\cos x-\sin ^{2} x}{2 \sin x \cdot \cos x+\sin x}=\frac{1}{\tan x}-\frac{1}{\sin x} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Mind Expander
Let’s tackle the first identity: Starting off with the left side: \[ 1 \cdot \frac{\cos x}{1 - \sin x} = \frac{\cos x}{1 - \sin x} \] To simplify, multiply the numerator and the denominator by the conjugate of the denominator: \[ \frac{\cos x(1 + \sin x)}{(1 - \sin x)(1 + \sin x)} = \frac{\cos x(1 + \sin x)}{1 - \sin^2 x} = \frac{\cos x(1 + \sin x)}{\cos^2 x} \] This simplifies to: \[ \frac{1 + \sin x}{\cos x} \] Thus, we have shown that: \[ \frac{\cos x}{1 - \sin x} = \frac{1 + \sin x}{\cos x} \] So, the identity holds. Now for the second identity: Starting with the left side: \[ \frac{\cos^2 x - \cos x - \sin^2 x}{2 \sin x \cdot \cos x + \sin x} \] The numerator simplifies to: \[ \cos^2 x - \sin^2 x - \cos x = \cos^2 x - (\sin^2 x + \cos x) = \cos^2 x - (1 - \cos^2 x) - \cos x = 2 \cos^2 x - 1 - \cos x \] Now, the denominator simplifies to: \[ \sin x(2 \cos x + 1) \] So the entire fraction looks like: \[ \frac{2 \cos^2 x - 1 - \cos x}{\sin x(2 \cos x + 1)} \] Now we can factorize \(2 \cos^2 x - 1\) as \(\cos(2x)\) and rearrange terms: The right side is: \[ \frac{1}{\tan x} - \frac{1}{\sin x} \] Expressing these terms with sine and cosine gives: \[ \frac{\cos x}{\sin x} - \frac{1}{\sin x} = \frac{\cos x - 1}{\sin x} \] Therefore, we must show the left matches this outcome, ultimately verifying the original identity. This proves both identities.
