Pregunta
upstudy study bank question image url

The angle measures associated with which set of ordered pairs share the same reference angle? \( \left(-\frac{\sqrt{3}}{2},-\frac{1}{2}\right) \cdot\left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right) \) \( \left(\frac{1}{2},-\frac{\sqrt{3}}{2}\right) \cdot\left(-\frac{\sqrt{3}}{2}, \frac{1}{2}\right) \) \( \left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right) \cdot\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right) \) \( \left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right) \cdot\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right) \)

Ask by Li Ray. in the United States
Feb 28,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Option 3 has two angles with the same reference angle.

Solución

Recall that a reference angle is the acute angle (less than 90°) that the terminal ray of an angle makes with the x‐axis. We need to examine each pair of points (which represent (cos θ, sin θ) for some angles) to see if the two angles have the same reference angle. Option 1: (–√3⁄2, –1⁄2) and (–1⁄2, –√3⁄2) • For (–√3⁄2, –1⁄2): The absolute values are (√3⁄2, 1⁄2). Since cos⁻¹(√3⁄2) = 30° and sin⁻¹(1⁄2) = 30°, the reference angle is 30°. • For (–1⁄2, –√3⁄2): The absolute values are (1⁄2, √3⁄2). Here cos⁻¹(1⁄2) = 60° and sin⁻¹(√3⁄2) = 60°, so the reference angle is 60°. Since one angle has a 30° reference and the other a 60° reference, they do not share the same reference angle. Option 2: (1⁄2, –√3⁄2) and (–√3⁄2, 1⁄2) • For (1⁄2, –√3⁄2): The absolute values are (1⁄2, √3⁄2), so the reference angle is 60° (because cos⁻¹(1⁄2) = 60°). • For (–√3⁄2, 1⁄2): The absolute values are (√3⁄2, 1⁄2), so the reference angle is 30°. They have different reference angles (60° vs. 30°). Option 3: (–1⁄2, –√3⁄2) and (1⁄2, √3⁄2) • For (–1⁄2, –√3⁄2): The absolute values are (1⁄2, √3⁄2). This corresponds to a reference angle of 60°. • For (1⁄2, √3⁄2): The absolute values are again (1⁄2, √3⁄2) so the reference angle is 60°. Since both have a reference angle of 60°, they share the same reference angle. Option 4: (√3⁄2, 1⁄2) and (1⁄2, √3⁄2) • For (√3⁄2, 1⁄2): The absolute values are (√3⁄2, 1⁄2), which gives a reference angle of 30°. • For (1⁄2, √3⁄2): The absolute values are (1⁄2, √3⁄2), which gives a reference angle of 60°. They do not match. Thus, only Option 3 consists of two angles with the same reference angle. Answer: Option 3 (–1⁄2, –√3⁄2) and (1⁄2, √3⁄2).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To determine which set of ordered pairs shares the same reference angle, we need to convert these pairs into angles. The reference angle is defined as the acute angle formed by the terminal side of the angle and the x-axis, taking into account the signs of sine and cosine. Both \( \left(-\frac{\sqrt{3}}{2},-\frac{1}{2}\right) \) and \( \left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right) \) correspond to angles in the third quadrant. Their reference angles would be the same because they're both derived from the same sine and cosine values, yielding an acute angle. On the other hand, the pairs \( \left(\frac{1}{2},-\frac{\sqrt{3}}{2}\right) \) and \( \left(-\frac{\sqrt{3}}{2}, \frac{1}{2}\right) \) are located in different quadrants and have different sine and cosine values, indicating different reference angles. In conclusion, the first pair \( \left(-\frac{\sqrt{3}}{2},-\frac{1}{2}\right) \) and the fourth pair \( \left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right) \) share the same reference angle as they lie in the same quadrant with similar trigonometric values. To further explore angles and their properties, consider taking a trip down history's timeline to understand how ancient Greeks and later mathematicians came up with the foundational concepts of trigonometry. It's fascinating to realize how geometry played a crucial role in the development of not only navigation but also in the very essence of astronomy! If you're looking to apply these concepts in real-world scenarios, think about how architects and engineers utilize angles and trigonometric functions to design structures. From determining the slope of a roof to ensuring that bridges can withstand various loads, understanding reference angles can play a pivotal role in practical applications!

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad