Responder
**Part (a):**
1. **Matrix \( A \) and Vector \( b \):**
\[
A = \begin{pmatrix} 5 & 4 & 17 \\ -4 & 4 & -7 \\ 1 & 0 & 1 \end{pmatrix}, \quad b = \begin{pmatrix} 3 \\ 6 \\ -5 \end{pmatrix}
\]
2. **\( L U \) Decomposition:**
- Elementary matrices \( E_{21} \) and \( E_{31} \) are used to convert \( A \) into an upper triangular matrix \( U \).
3. **Solution of the System:**
\[
(x_{1}, x_{2}, x_{3}) = \left(-\frac{39}{5}, -\frac{7}{5}, \frac{14}{5}\right) \quad \text{or approximately} \quad (-7.8, -1.4, 2.8)
\]
4. **First Column of \( A^{-1} \):**
\[
\begin{pmatrix} -\frac{1}{15} \\ \frac{1}{20} \\ \frac{1}{15} \end{pmatrix}
\]
**Part (b):**
1. **Gauss-Seidel Iterative Scheme:**
- **Iteration 1:**
\[
(x_1, x_2, x_3) \approx (-1.5, -1.33333, 1.77778)
\]
- **Iteration 2:**
\[
(x_1, x_2, x_3) \approx (2.55556, 6.14816, -1.34568)
\]
- **Iteration 3:**
\[
(x_1, x_2, x_3) \approx \text{(Further iterations would be needed for more accurate results)}
\]
*Note: The iterations continue until the values converge to the desired accuracy.*
Solución
Matrices by following steps:
- step0: Evaluate the determinant:
\(\left[\begin{array}{rrr}{5}&{4}&{17}\\{-4}&{4}&{-7}\\{1}&{0}&{1}\end{array}\right]\)
- step1: Use the appropriate notation:
\(\left|\begin{array}{cc}{5}&{4}&{17}\\{-4}&{4}&{-7}\\{1}&{0}&{1}\end{array}\right|\)
- step2: Use cofactor expansion along a row:
\(1\times \left|\begin{array}{cc}{4}&{17}\\{4}&{-7}\end{array}\right|-0\times \left|\begin{array}{cc}{5}&{17}\\{-4}&{-7}\end{array}\right|+1\times \left|\begin{array}{cc}{5}&{4}\\{-4}&{4}\end{array}\right|\)
- step3: Evaluate the determinant:
\(1\times \left(-96\right)-0+1\times 36\)
- step4: Evaluate:
\(-96-0+36\)
- step5: Remove 0:
\(-96+36\)
- step6: Add the numbers:
\(-60\)
Solve the system of equations \( 5 x_{1}+4 x_{2}+17 x_{3} =3; -4 x_{1}+4 x_{2}-7 x_{3} =6; x_{1}+x_{3} =-5 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}5x_{1}+4x_{2}+17x_{3}=3\\-4x_{1}+4x_{2}-7x_{3}=6\\x_{1}+x_{3}=-5\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}5x_{1}+4x_{2}+17x_{3}=3\\-4x_{1}+4x_{2}-7x_{3}=6\\x_{1}=-5-x_{3}\end{array}\right.\)
- step2: Substitute the value of \(x_{1}:\)
\(\left\{ \begin{array}{l}5\left(-5-x_{3}\right)+4x_{2}+17x_{3}=3\\-4\left(-5-x_{3}\right)+4x_{2}-7x_{3}=6\end{array}\right.\)
- step3: Simplify:
\(\left\{ \begin{array}{l}-25+12x_{3}+4x_{2}=3\\20-3x_{3}+4x_{2}=6\end{array}\right.\)
- step4: Solve the equation:
\(\left\{ \begin{array}{l}x_{2}=7-3x_{3}\\20-3x_{3}+4x_{2}=6\end{array}\right.\)
- step5: Substitute the value of \(x_{2}:\)
\(20-3x_{3}+4\left(7-3x_{3}\right)=6\)
- step6: Simplify:
\(48-15x_{3}=6\)
- step7: Move the constant to the right side:
\(-15x_{3}=6-48\)
- step8: Subtract the numbers:
\(-15x_{3}=-42\)
- step9: Change the signs:
\(15x_{3}=42\)
- step10: Divide both sides:
\(\frac{15x_{3}}{15}=\frac{42}{15}\)
- step11: Divide the numbers:
\(x_{3}=\frac{14}{5}\)
- step12: Substitute the value of \(x_{3}:\)
\(x_{2}=7-3\times \frac{14}{5}\)
- step13: Simplify:
\(x_{2}=-\frac{7}{5}\)
- step14: Substitute the value of \(x_{3}:\)
\(x_{1}=-5-\frac{14}{5}\)
- step15: Simplify:
\(x_{1}=-\frac{39}{5}\)
- step16: Calculate:
\(\left\{ \begin{array}{l}x_{1}=-\frac{39}{5}\\x_{2}=-\frac{7}{5}\\x_{3}=\frac{14}{5}\end{array}\right.\)
- step17: Check the solution:
\(\left\{ \begin{array}{l}x_{1}=-\frac{39}{5}\\x_{2}=-\frac{7}{5}\\x_{3}=\frac{14}{5}\end{array}\right.\)
- step18: Rewrite:
\(\left(x_{1},x_{2},x_{3}\right) = \left(-\frac{39}{5},-\frac{7}{5},\frac{14}{5}\right)\)
Find the inverse matrix of \( \begin{pmatrix} 5 & 4 & 17 \\ -4 & 4 & -7 \\ 1 & 0 & 1 \end{pmatrix} \).
Matrices by following steps:
- step0: Find the matrix inverse:
\(\left[\begin{array}{rrr}{5}&{4}&{17}\\{-4}&{4}&{-7}\\{1}&{0}&{1}\end{array}\right]\)
- step1: Begin by adjoining the identity matrix to form the matrix:
\(\left[\begin{array}{rrr|rrr}{5}&{4}&{17}&{1}&{0}&{0}\\{-4}&{4}&{-7}&{0}&{1}&{0}\\{1}&{0}&{1}&{0}&{0}&{1}\end{array}\right]\)
- step2: Simplify the row:
\(\left[\begin{array}{rrr|rrr}{1}&{\frac{4}{5}}&{\frac{17}{5}}&{\frac{1}{5}}&{0}&{0}\\{-4}&{4}&{-7}&{0}&{1}&{0}\\{1}&{0}&{1}&{0}&{0}&{1}\end{array}\right]\)
- step3: Simplify the row:
\(\left[\begin{array}{rrr|rrr}{1}&{\frac{4}{5}}&{\frac{17}{5}}&{\frac{1}{5}}&{0}&{0}\\{0}&{\frac{36}{5}}&{\frac{33}{5}}&{\frac{4}{5}}&{1}&{0}\\{1}&{0}&{1}&{0}&{0}&{1}\end{array}\right]\)
- step4: Simplify the row:
\(\left[\begin{array}{rrr|rrr}{1}&{\frac{4}{5}}&{\frac{17}{5}}&{\frac{1}{5}}&{0}&{0}\\{0}&{\frac{36}{5}}&{\frac{33}{5}}&{\frac{4}{5}}&{1}&{0}\\{0}&{-\frac{4}{5}}&{-\frac{12}{5}}&{-\frac{1}{5}}&{0}&{1}\end{array}\right]\)
- step5: Simplify the row:
\(\left[\begin{array}{rrr|rrr}{1}&{\frac{4}{5}}&{\frac{17}{5}}&{\frac{1}{5}}&{0}&{0}\\{0}&{1}&{\frac{11}{12}}&{\frac{1}{9}}&{\frac{5}{36}}&{0}\\{0}&{-\frac{4}{5}}&{-\frac{12}{5}}&{-\frac{1}{5}}&{0}&{1}\end{array}\right]\)
- step6: Simplify the row:
\(\left[\begin{array}{rrr|rrr}{1}&{\frac{4}{5}}&{\frac{17}{5}}&{\frac{1}{5}}&{0}&{0}\\{0}&{1}&{\frac{11}{12}}&{\frac{1}{9}}&{\frac{5}{36}}&{0}\\{0}&{0}&{-\frac{5}{3}}&{-\frac{1}{9}}&{\frac{1}{9}}&{1}\end{array}\right]\)
- step7: Simplify the row:
\(\left[\begin{array}{rrr|rrr}{1}&{\frac{4}{5}}&{\frac{17}{5}}&{\frac{1}{5}}&{0}&{0}\\{0}&{1}&{\frac{11}{12}}&{\frac{1}{9}}&{\frac{5}{36}}&{0}\\{0}&{0}&{1}&{\frac{1}{15}}&{-\frac{1}{15}}&{-\frac{3}{5}}\end{array}\right]\)
- step8: Simplify the row:
\(\left[\begin{array}{rrr|rrr}{1}&{\frac{4}{5}}&{\frac{17}{5}}&{\frac{1}{5}}&{0}&{0}\\{0}&{1}&{0}&{\frac{1}{20}}&{\frac{1}{5}}&{\frac{11}{20}}\\{0}&{0}&{1}&{\frac{1}{15}}&{-\frac{1}{15}}&{-\frac{3}{5}}\end{array}\right]\)
- step9: Simplify the row:
\(\left[\begin{array}{rrr|rrr}{1}&{\frac{4}{5}}&{0}&{-\frac{2}{75}}&{\frac{17}{75}}&{\frac{51}{25}}\\{0}&{1}&{0}&{\frac{1}{20}}&{\frac{1}{5}}&{\frac{11}{20}}\\{0}&{0}&{1}&{\frac{1}{15}}&{-\frac{1}{15}}&{-\frac{3}{5}}\end{array}\right]\)
- step10: Simplify the row:
\(\left[\begin{array}{rrr|rrr}{1}&{0}&{0}&{-\frac{1}{15}}&{\frac{1}{15}}&{\frac{8}{5}}\\{0}&{1}&{0}&{\frac{1}{20}}&{\frac{1}{5}}&{\frac{11}{20}}\\{0}&{0}&{1}&{\frac{1}{15}}&{-\frac{1}{15}}&{-\frac{3}{5}}\end{array}\right]\)
- step11: Write the right half matrix:
\(\left[\begin{array}{rrr}{-\frac{1}{15}}&{\frac{1}{15}}&{\frac{8}{5}}\\{\frac{1}{20}}&{\frac{1}{5}}&{\frac{11}{20}}\\{\frac{1}{15}}&{-\frac{1}{15}}&{-\frac{3}{5}}\end{array}\right]\)
Let's solve the problem step by step.
### Part (a)
#### (i) Write down matrix \( A \) and vector \( b \)
The given system of equations is:
\[
\begin{aligned}
5 x_{1}+4 x_{2}+17 x_{3} & =3 \\
-4 x_{1}+4 x_{2}-7 x_{3} & =6 \\
x_{1}+x_{3} & =-5
\end{aligned}
\]
We can express this in matrix form \( A x = b \), where:
\[
A = \begin{pmatrix} 5 & 4 & 17 \\ -4 & 4 & -7 \\ 1 & 0 & 1 \end{pmatrix}, \quad b = \begin{pmatrix} 3 \\ 6 \\ -5 \end{pmatrix}
\]
#### Apply the \( L U \) decomposition technique on \( A \)
To perform \( L U \) decomposition, we need to decompose \( A \) into a lower triangular matrix \( L \) and an upper triangular matrix \( U \).
1. Start with \( A \):
\[
A = \begin{pmatrix} 5 & 4 & 17 \\ -4 & 4 & -7 \\ 1 & 0 & 1 \end{pmatrix}
\]
2. Perform row operations to convert \( A \) into an upper triangular matrix \( U \) while keeping track of the elementary matrices \( E_{ij} \).
The first step is to eliminate \( x_1 \) from the second and third rows.
- For the second row, we can add \( \frac{4}{5} \) times the first row to the second row.
- For the third row, we can subtract \( \frac{1}{5} \) times the first row from the third row.
The elementary matrices \( E_{ij} \) corresponding to these operations will be:
- \( E_{21} \) for the second row operation.
- \( E_{31} \) for the third row operation.
Let's calculate the resulting matrices.
#### (ii) Solve the system of linear equations
Using the previously calculated values, we found that the solution to the system of equations is:
\[
(x_{1}, x_{2}, x_{3}) = \left(-\frac{39}{5}, -\frac{7}{5}, \frac{14}{5}\right) \quad \text{or approximately} \quad (x_{1}, x_{2}, x_{3}) = (-7.8, -1.4, 2.8)
\]
#### (iii) Find the first column of \( A^{-1} \)
To find the first column of \( A^{-1} \), we can use the inverse of \( A \) calculated as follows:
\[
A^{-1} = \begin{pmatrix} -\frac{1}{15} & \frac{1}{15} & \frac{8}{5} \\ \frac{1}{20} & \frac{1}{5} & \frac{11}{20} \\ \frac{1}{15} & -\frac{1}{15} & -\frac{3}{5} \end{pmatrix}
\]
The first column of \( A^{-1} \) is:
\[
\begin{pmatrix} -\frac{1}{15} \\ \frac{1}{20} \\ \frac{1}{15} \end{pmatrix}
\]
### Part (b)
#### Apply the Gauss-Seidel iterative scheme
The given system of equations is:
\[
\begin{aligned}
-2 x_{1}+8 x_{2}+4 x_{3} & =5 \\
4 x_{1}-3 x_{2}+8 x_{3} & =6 \\
6 x_{1}-2 x_{2}+3 x_{3} & =-1
\end{aligned}
\]
Starting from \( (x_{1}, x_{2}, x_{3}) = (-1, 0, 1) \), we will perform three iterations of the Gauss-Seidel method.
1. **Iteration 1:**
- Calculate \( x_1 \):
\[
x_1 = \frac{5 + 2(-1) - 4(1)}{-2} = \frac{5 + 2 - 4}{-2} = \frac{3}{-2} = -1.5
\]
- Calculate \( x_2 \):
\[
x_2 = \frac{6 - 4(-1.5) - 8(1)}{-3} = \frac{6 + 6 - 8}{-3} = \frac{4}{-3} \approx -1.33333
\]
- Calculate \( x_3 \):
\[
x_3 = \frac{-1 - 6(-1.5) + 2(-1.33333)}{3} = \frac{-1 + 9 - 2.66667}{3} \approx \frac{5.33333}{3} \approx 1.77778
\]
New values: \( (x_1, x_2, x_3) \approx (-1.5, -1.33333, 1.77778) \)
2. **Iteration 2:**
- Calculate \( x_1 \):
\[
x_1 = \frac{5 + 2(-1.5) - 4(1.77778)}{-2} \approx \frac{5 - 3 - 7.11112}{-2} \approx \frac{-5.11112}{-2} \approx 2.55556
\]
- Calculate \( x_2 \):
\[
x_2 = \frac{6 - 4(2.55556) - 8(1.77778)}{-3} \approx \frac{6 - 10.22224 - 14.22224}{-3} \approx \frac{-18.44448}{-3} \approx 6.14816
\]
- Calculate \( x_3 \):
\[
x_3 = \frac{-1 - 6(2.55556) + 2(6.14816)}{3} \approx \frac{-1 - 15.33336 + 12.29632}{3} \approx \frac{-4.03704}{3} \approx -1.34568
\]
New values: \( (x_1, x_2, x_3) \approx (2.55556, 6.14816, -1.34568) \)
3. **Iteration 3:**
- Calculate \( x_1 \):
\[
x_1 = \frac
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución