Pregunta
upstudy study bank question image url

Finding the rate or time in a word problem on continuous exponential... The number of bacteria in a certain population increases according to a continuous exponential growth model, with a growth rate parameter of \( 4.8 \% \) per hour. How many hours does it take for the size of the sample to double? Note: This is a continuous exponential growth model. Do not round any intermediate computations, and round your answer to the nearest hundredth.

Ask by Frazier Delgado. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

It takes approximately 14.44 hours for the bacteria population to double.

Solución

For a continuous exponential growth model, the formula for the quantity N at time t is given by:   N(t) = N₀ · e^(rt) where:   N₀ is the initial quantity,   r is the continuous growth rate,   t is time. We are asked for the doubling time, T, which means we want N(T) = 2N₀. Starting with:   2N₀ = N₀ · e^(rT) Divide both sides by N₀:   2 = e^(rT) Take the natural logarithm of both sides:   ln 2 = rT Solve for T:   T = ln 2 / r Given r = 4.8% per hour = 0.048 per hour, we have:   T = ln 2 / 0.048 Calculating using ln 2 ≈ 0.693147 (do not round intermediate steps):   T ≈ 0.693147 / 0.048 ≈ 14.44 hours Thus, it takes approximately 14.44 hours for the number of bacteria to double.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

In a continuous exponential growth model, the time \( t \) it takes for a population to double can be determined using the formula \( t = \frac{\ln(2)}{r} \), where \( r \) is the growth rate expressed as a decimal. Since your growth rate is \( 4.8\% \), as a decimal, it would be \( 0.048 \). Plugging that into the formula gives us: \[ t = \frac{\ln(2)}{0.048} \approx \frac{0.693147}{0.048} \approx 14.44 \text{ hours}. \] So, it takes approximately \( 14.44 \) hours for the bacteria population to double. When dealing with continuous exponential growth, remember to always check if you're using the correct growth rate! A common mistake is to use the percentage directly instead of converting it to a decimal first. That's key for getting the right calculation. Also, practicing with different growth rates can really help solidify the concept and prepare you for varied problems!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad