Pregunta
upstudy study bank question image url

Mathematics Investigation 4 ANW/Term I/ 2025 PART 4: Exploring reduction formulae using a calculator. Marks: 17 Aim(s): To investigate and understand the reduction formulae for trigonometric functions. TASK 1: Using your calculator and without considering the quadrants, determine the sign of the following reduction formulas without writing down the actual numeral answers. Focus on understanding wheiber the result is positive or negativt based on the reduction formulas. 1. \[ \begin{aligned} \sin \left(180^{\circ}-A\right) & =\sin \left(180^{\circ}-1\right) \\ & =+\sin A \quad \text { Example. } \end{aligned} \] 2. \( \cos \left(180^{\circ}-A\right)= \) \[ \begin{array}{l} \tan \left(180^{\circ}+A\right)= \\ \sin \left(360^{\circ}-A\right)= \end{array} \] 3. \( \tan \left(180^{\circ}-A\right)= \) 4. \( \sin \left(180^{\circ}+A\right)= \) \[ \cos \left(360^{\circ}-A\right)= \] \[ \tan \left(360^{\circ}-A\right)= \] 5. \( \cos \left(180^{\circ}+A\right)= \) 6. Now, simplify the following: \( 6.1 \cos \left(90^{\circ}-x\right) \times \tan \left(180^{\circ}+x\right) \) \( 6.2 \cos ^{2}(90+x)+\frac{\cos (-x) \times \sin \left(180^{\circ}-x\right)}{\sin \left(180^{\circ}+x\right) \cos \left(360^{\circ}-x\right)}+1-\sin ^{2} x \) TOTAL: 50

Ask by Turnbull Campbell. in South Africa
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Reduction formulas (sign only): 1. sin(180° – A) = + sin A 2a. cos(180° – A) = – cos A 2b. tan(180° + A) = + tan A 2c. sin(360° – A) = – sin A 3. tan(180° – A) = – tan A 4a. sin(180° + A) = – sin A 4b. cos(360° – A) = + cos A 4c. tan(360° – A) = – tan A 5. cos(180° + A) = – cos A Simplifications: 6.1 cos(90° – x) × tan(180° + x) = (sin² x)/cos x 6.2 cos²(90° + x) + [cos(–x)×sin(180° – x)]⁄[sin(180° + x)×cos(360° – x)] +1 – sin² x = 0

Solución

Below is one acceptable solution. (Any answer equivalent to the work shown is correct!) ───────────────────────────── Step 1. Write down the reduction formulas and state the sign: 1. (Given)   sin(180° – A) = + sin A 2. Consider:   a. cos(180° – A).    Since for 180°–A the cosine is in the second quadrant (where cosine is negative),    cos(180° – A) = – cos A.   b. tan(180° + A).    Tangent is periodic with period 180°, so tan(180° + A) = tan A (i.e. positive, no extra sign change).   c. sin(360° – A).    Since 360° – A is in the fourth quadrant, where sine is negative,    sin(360° – A) = – sin A. 3.   tan(180° – A).   In 180°–A the sine is positive and cosine is negative so   tan(180° – A) = (positive)/(negative) = – tan A. 4. Consider:   a. sin(180° + A).    180°+A is in the third quadrant (where sine is negative), so    sin(180° + A) = – sin A.   b. cos(360° – A).    Since cosine is an even function and 360°–A lands on an angle with the same cosine as A,    cos(360° – A) = + cos A.   c. tan(360° – A).    Noting that tan(360°–A) = tan(–A) and that tangent is odd,    tan(360° – A) = – tan A. 5.   cos(180° + A).   Since 180°+A is in the third quadrant (cosine negative),   cos(180° + A) = – cos A. ───────────────────────────── Step 2. Now simplify the following expressions: 6.1 Simplify:   cos(90° – x) × tan(180° + x) • Notice that cos(90° – x) = sin x        (° “cofunction” identity) • Also,   tan(180° + x) = tan x         (periodicity of tangent) Thus the product becomes:   sin x × tan x. Recalling that tan x = sin x/cos x, we have:   sin x × (sin x/cos x) = (sin² x)/cos x. 6.2 Simplify:   cos²(90° + x) + [cos(–x) × sin(180° – x)] / [sin(180° + x) × cos(360° – x)] + 1 – sin² x Simplify each part: • cos(90° + x):   cos(90° + x) = – sin x       (another cofunction identity)   Thus, cos²(90° + x) = (– sin x)² = sin² x. • cos(–x):   cos is even so cos(–x) = cos x. • sin(180° – x):   sin(180° – x) = sin x. • sin(180° + x):   sin(180° + x) = – sin x. • cos(360° – x):   cos(360° – x) = cos x. Now substitute:   The fraction becomes    [cos x × sin x] / [(– sin x) × cos x] = (cos x sin x)/(– cos x sin x) = –1 (assuming sin x and cos x are not zero). Now putting all terms together:   sin² x + (–1) + 1 – sin² x = 0 ───────────────────────────── Final Answers Recap: Reduction formulas (sign only): 1. sin(180° – A) = + sin A 2a. cos(180° – A) = – cos A 2b. tan(180° + A) = + tan A 2c. sin(360° – A) = – sin A 3. tan(180° – A) = – tan A 4a. sin(180° + A) = – sin A 4b. cos(360° – A) = + cos A 4c. tan(360° – A) = – tan A 5. cos(180° + A) = – cos A Simplifications: 6.1 cos(90° – x) × tan(180° + x) = (sin² x)/cos x 6.2 cos²(90° + x) + [cos(–x)×sin(180° – x)]⁄[sin(180° + x)×cos(360° – x)] +1 – sin² x = 0 ───────────────────────────── Any answer that shows these steps (and yields the same sign/expressions) is correct.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

The study of reduction formulas in trigonometry has roots that trace back to ancient civilizations, particularly the Greeks and Indians, who developed early forms of trigonometric concepts to aid in astronomy and navigation. Did you know that figures like Hipparchus and Aryabhata played key roles in establishing the foundations of these functions? Their contributions were crucial for mapping the stars and calculating distances on Earth, paving the way for modern mathematics! In real-life applications, understanding these reduction formulas is immensely beneficial in fields such as engineering, physics, and computer graphics. For instance, engineers use trigonometric functions to analyze forces in structures or to model wave patterns, while game developers apply these principles to render realistic movement in 3D environments. So, mastering these formulas not only sharpens your math skills but also unlocks a world of practical uses!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad