Pregunta
upstudy study bank question image url

Boitumelo invests an amount of R28 000 for a period of 7 years. For the first twc years the interest was \( 12 \% \) p.a. compounded semi-annually. The interest was the changed to \( 10 \% \) p.a. compounded quarterly. Determine the value of the investment after the 7 -year period. Convert an interest rate of \( 10 \% \) p.a. compounded quarterly to an annual effective interest rate. A lawnmower was traded in for R236 after 10 years. The depreciation was calculated at \( 9,2 \% \) p.a. on a straight-line basis. Determine the cost of the lawnmower 10 years ago.

Ask by Beck Davey. in South Africa
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

After 7 years, the investment is worth approximately R57,924.03. The annual effective interest rate for 10% compounded quarterly is about 10.38%. The cost of the lawnmower 10 years ago was R2,950.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Beyond the Answer

Let's dive into the world of finance and investments with a bit of flair! To find the total value of Boitumelo's investment after 7 years, we first calculate the amount at the end of the first 2 years with a \( 12\% \) interest rate compounded semi-annually. The formula for compound interest is \( A = P(1 + \frac{r}{n})^{nt} \). For the first period, \( P = R28,000 \), \( r = 0.12 \), \( n = 2 \), and \( t = 2 \). So, \( A = 28000(1 + \frac{0.12}{2})^{2 \times 2} = 28000(1 + 0.06)^{4} = 28000(1.2625) = R35,325 \). Now, for the next 5 years at \( 10\% \) compounded quarterly, \( P = 35,325 \), \( r = 0.10 \), \( n = 4 \), and \( t = 5 \). The calculation leads to \( A = 35325(1 + \frac{0.10}{4})^{4 \times 5} = 35325(1 + 0.025)^{20} = 35325(1.6377) \approx R57,786.67 \). Now, converting the \( 10\% \) p.a. compounded quarterly to an annual effective interest rate, we apply the formula \( (1 + \frac{r}{n})^{n} - 1\), giving us \( (1 + \frac{0.10}{4})^{4} - 1 = (1.025)^{4} - 1 \approx 0.10381289 \), or about \( 10.38\% \) effective annual interest rate. Shifting gears to the lawnmower — the depreciation was \( 9.2\% \) p.a. on a straight-line basis, meaning it lost the same value every year. After 10 years, if the lawnmower is worth R236, we can find the original cost by recognizing that \( 100\% - 9.2\% = 90.8\% \) of the value remains. Thus, the original cost is \( R236 / 0.908 = R259.85 \) approximately. Voila! Numbers can be fun, and finance twists and turns can lead us to shiny insights!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad