\( \begin{array}{lll}\text { The expression } 9 x^{3}-12 x^{2}-11 x-19 \text { divided by } \\ 3 x-5 \text { equals } a x^{2}+b x+c+\frac{R}{3 x-5}, & \text { where } \\ a= & b= & c= \\ 3 & \\ & \end{array} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Beyond the Answer
When you divide \( 9x^3 - 12x^2 - 11x - 19 \) by \( 3x - 5 \), you can start by using polynomial long division. By dividing the leading term of the dividend by the leading term of the divisor, you'll get the first term of the quotient. Continue this process until you reach the remainder. You will find that \( a = 3 \), \( b = -1 \), and \( c = -4 \). For verification, you can substitute your values of \( a \), \( b \), and \( c \) back into the expression and reconstruct the original polynomial to ensure that everything checks out correctly—this is a handy way to avoid mistakes in your calculations and confirm your results!
